Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio concepts for an efficient and accurate determination of thermodynamic properties up to the melting point. Calphad XXXIX, Jeju Island, South Korea (2010)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: First principles concepts to determine the heat capacity of Fe-based alloys. Calphad XXXIX, Jeju Island, South Korea (2010)
Aydin, U.; Ismer, L.; Hickel, T.; Neugebauer, J.: Chemical trends of the solution enthalpy of hydrogen in 3d transition metals in dilute limit, derived from first principles. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Hickel, T.: Computational Phase Studies: Deriving thermodynamic properties of metals from first principles. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
von Pezold, J.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the 1st transition series: An ab initio study of hydrogen embrittlement. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Zhu, L.-F.; Dick, A.; Friák, M.; Hickel, T.; Neugebauer, J.: First principles study of thermodynamic, structural and elastic properties of eutectic Ti-Fe alloys. DPG Spring Meeting 2010, Regensburg, Germany (2010)
Dick, A.; Hickel, T.; Neugebauer, J.: Structure and Energetics of the Stacking Faults in Austenitic FeMn Alloys Studied by First Principles Calculations. APS March Meeting 2010, Portland, OR, USA (2010)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Ab-initio and thermodynamic description of interaction of hydrogen with vacancies in fcc iron. APS 2010 Spring Meeting, Portland, OR, USA (2010)
von Pezold, J.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the 1st transition series: An ab initio study of hydrogen embrittlement. APS March Meeting 2010, Portland, OR, USA (2010)
Zhu, L.-F.; Dick, A.; Friák, M.; Hickel, T.; Neugebauer, J.: First principles study of thermodynamic, structural and elastic properties of eutectic Ti–Fe alloys. March meeting of the American Physical Society (APS), Portland, OR, USA (2010)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Computing Ab Initio Free Energy Contributions of Point Defects. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.