Pierce, D.T.; Benzing, J. T.; Jiménez, J. A.; Hickel, T.; Bleskov, I.; Keum, J. K.; Raabe, D.; Wittig, J., J. E.: The influence of temperature on the strain-hardening behavior of Fe–22/25/28Mn–3Al–3Si TRIP/TWIP steels. Materialia 22, 101425 (2022)
Mendive-Tapia, E.; Neugebauer, J.; Hickel, T.: Ab initio calculation of the magnetic Gibbs free energy of materials using magnetically constrained supercells. Physical Review B 105 (16), 064425 (2022)
Sreekala, L.; Dey, P.; Hickel, T.; Neugebauer, J.: Unveiling nonmonotonic chemical trends in the solubility of H in complex Fe–Cr–Mn carbides by means of ab initio based approaches. Physical Review Materials 6 (1), 014403 (2022)
Schneider, A.; Fu, C.-C.; Waseda, O.; Barreteau, C.; Hickel, T.: Ab initio based models for temperature-dependent magnetochemical interplay in bcc Fe–Mn alloys. Physical Review B 103 (2), 024421 (2021)
Lochner, F.; Eremin, I. M.; Hickel, T.; Neugebauer, J.: Ab initio study of the structural response to magnetic disorder and van der Waals interactions in FeSe. Physical Review B 103 (5), 054506 (2021)
Esakkiraja, N.; Gupta, A.; Jayaram, V.; Hickel, T.; Divinski, S. V.; Paul, A.: Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy. Acta Materialia 195, pp. 35 - 49 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.