Lhadi, S.; Ahzi, S.; Rémond, Y.; Nikolov, S. D.; Fabritius, H.-O.: Effects of homogenization technique and introduction of interfaces in a multiscale approach to predict the elastic properties of arthropod cuticle. Journal of the Mechanical Behavior of Biomedical Materials 23, pp. 103 - 116 (2013)
Fabritius, H.; Karsten, E. S.; Balasundaram, K.; Hild, S.; Huemer, K.; Raabe, D.: Correlation of structure, composition and local mechanical properties in the dorsal carapace of the edible crab Cancer pagurus. 11, pp. 766 - 776 (2012)
Maniruzzaman, M.; Rahman, M. A.; Gafur, M. A.; Fabritius, H.; Raabe, D.: Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. Journal of Composite Materials 46, pp. 79 - 90 (2012)
Van Opdenbosch, D.; Johannes, M.; Wu, X.; Fabritius, H.; Zollfrank, C.: Fabrication of high-temperature resistant threedimensional photonic crystals with tunable photonic properties by biotemplating. 4, pp. 516 - 522 (2012)
Fabritius, H.; Sachs, C.; Romano, P.; Raabe, D.: Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the lobster Homarus americanus. Advanced Materials 21, pp. 391 - 400 (2009)
Al-Sawalmih, A.; Li, C.; Siegel, S.; Fabritius, H.; Yi, S. B.; Raabe, D.; Fratzl, P.; Paris, O.: Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster. Advanced Functional Materials 18 (20), pp. 3307 - 3314 (2008)
Sachs, C.; Fabritius, H.; Raabe, D.: Influence of the microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. Journal of Structural Biology 161, pp. 120 - 132 (2008)
Boßelmann, F.; Romano, P.; Fabritius, H.; Raabe, D.: The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochimica Acta 463 (1-2), pp. 65 - 68 (2007)
Romano, P.; Fabritius, H.; Raabe, D.: The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomaterialia 3 (3), pp. 301 - 309 (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.