Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. AVS 63rd International Symposium & Exhibition, Nashville, TN, USA (2016)
Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 230th ECS Meeting-PRiME 2016, Honolulu, HI, USA (2016)
Uebel, M.; Rohwerder, M.: Conducting polymer based anticorrosion composite coatings – acceleration of the trigger signal spreading. 7th Kurt-Schwabe-Symposium 2016, Mittweida, Germany (2016)
Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Rohwerder, M.; Dandapani, V.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Uebel, M.; Vimalanandan, A.; Lv, L.-P.; Crespy, D.; Rohwerder, M.: Dual payload capsules for corrosion protection coatings – importance of the electronic coupling at the metal/capsules interface. 67th Annual Meeting of the International Society of Electrochemistry (ISE) 2016, The Hague, The Netherlands (2016)
Mondragon Ochoa, J. S.; Altin, A.; Rohwerder, M.; Erbe, A.: Surface Modification of Iron With Grafted Hydrophobic Acrylic Polymers and Study of Their Delamination Kinetics. Polymers and Organic Chemistry POC16, Hersonissos (Crete), Greece (2016)
Rohwerder, M.: Die Rasterkelvinsonde: neue Entwicklungen für die Charakterisierung von Korrosionsschutzbeschichtungen. 7. Korrosionsschutz-Symposium, Kloster Irsee, Germany (2016)
Rohwerder, M.: Characterization of Oxides in the Heat Affected Zone. Welding Workshop “Guidelines for use of welded stainless steel in corrosive environments” at TWI, Granta Park, Cambridge, UK (2016)
Tarzimoghadam, Z.; Rohwerder, M.; Merzlikin, S. V.; Bashir, A.; Yedra, L.; Eswara, S.; Ponge, D.; Raabe, D.: On the Role of δ phase in Hydrogen Embrittlement of Alloy 718: Multi-scale H-Mapping in a Ni–Nb Model Alloy. SINTEF and NTNU's Environmental Assisted Cracking (SNEAC) workshop, Trondheim, Norway (2016)
Wengert, A.; Swaminathan, S.; Vogel, A.; Rohwerder, M.: Internal oxidation of high strength steels during short-term annealing: Observation of unexpectedly fast progress of the internal oxidation and first tentative model. EFC Workshop High Temperature Corrosion, Frankfurt, Germany (2015)
Uebel, M.; Vimalanandan, A.; Tran, T. H.; Rohwerder, M.: Coatings for intelligent self-healing of macroscopic defects: first results and the major challenges. eMRS, Symposium „Self-Healing Materials", Warsaw, Poland (2015)
Rohwerder, M.: Selbstheilende Beschichtungen für den Korrosionsschutz: Ein kritischer Überblick. 28. Sitzung des AK “Korrosionsschutz durch Beschichtungen”, GfKorr, Frankfurt, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…