Fushimi, K.; Stratmann, M.; Hassel, A. W.: Electropolishing of NiTi shape memory alloys in methanolic H2SO4. Electrochim. Acta 52, pp. 1290 - 1295 (2006)
Jeliazova, Y.; Kayser, M.; Mildner, B.; Hassel, A. W.; Diesing, D.: Temperature stability of thin anodic oxide films in metal/insulator/metal structures: A comparison between tantalum and aluminium oxide. Thin Solid Films 500, pp. 330 - 335 (2006)
Lill, K. A.; Hassel, A. W.: A combined µ-mercury-reference-/ gold-counter-electrode system for microelectrochemical applications. J. Sol. State Electrochem. 10, pp. 941 - 946 (2006)
Milenkovic, S.; Hassel, A. W.; Schneider, A.: Effect of the Growth Conditions on the Spatial Features of Re Nanowires Produced by Directional Solidification. Nano Letters 6 (4), pp. 794 - 799 (2006)
Smith, A.J.; Stratmann, M.; Hassel, A. W.: Investigation of the effect of impingement angle on tribocorrosion using single impacts. Electrochim. Acta 51, pp. 6521 - 6526 (2006)
Hassel, A. W.; Bello-Rodriguez, B.; Milenkovic, S.; Schneider, A.: Electrochemical Production of Nanopore Arrays into a Nickel Aluminium Alloy. Electrochimica Acta 50, pp. 3033 - 3039 (2005)
Tan, K. S.; Hassel, A. W.; Stratmann, M.: Design and construction of a micro-indenter for tribological investigations. Mat.-Wiss. Werkstofftech. 36, pp. 13 - 17 (2005)
van der Kloet, J.; Hassel, A. W.; Stratmann, M.: Effect of Pretreatment on the Intermetallics in Aluminium Alloy 2024-T3. Zeitschrift für Physikalische Chemie 219, pp. 1505 - 1518 (2005)
Vander Kloet, J.; Hassel, A. W.; Stratmann, M.: Effect of pretreatment on the intermetallics in aluminum alloy 2024-T3. Zeitschrift fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics 219 (11), pp. 1505 - 1518 (2005)
Bonk, S.; Wicinski, M.; Hassel, A. W.; Stratmann, M.: Electrochemical characterizations of precipitates formed on zinc in alkaline sulphate solution with increasing pH values. Electrochemistry Communicatios 6, 8, pp. 800 - 804 (2004)
van der Kloet, J.; Schmidt, W.; Hassel, A. W.; Stratmann, M.: The Role of Chromate in Filiform Corrosion Inhibition. Electrochimica Acta 49 (10), pp. 1675 - 1685 (2004)
Hassel, A. W.; Stratmann, M.: Microscopic and nanoscopic aspects of corrosion and corrosion protection. Electrochimica Acta 48, 9, pp. 1093 - 1324 (2003)
van der Kloet, J.; Schmidt, W.; Hassel, A. W.; Stratmann, M.: The Role of Chromate in Filiform Corrosion Inhibition. Electrochimica Acta 48 (9), pp. 1211 - 1222 (2003)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…