Lhadi, S.; Ahzi, S.; Rémond, Y.; Nikolov, S. D.; Fabritius, H.-O.: Effects of homogenization technique and introduction of interfaces in a multiscale approach to predict the elastic properties of arthropod cuticle. Journal of the Mechanical Behavior of Biomedical Materials 23, pp. 103 - 116 (2013)
Fabritius, H.; Karsten, E. S.; Balasundaram, K.; Hild, S.; Huemer, K.; Raabe, D.: Correlation of structure, composition and local mechanical properties in the dorsal carapace of the edible crab Cancer pagurus. 11, pp. 766 - 776 (2012)
Maniruzzaman, M.; Rahman, M. A.; Gafur, M. A.; Fabritius, H.; Raabe, D.: Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. Journal of Composite Materials 46, pp. 79 - 90 (2012)
Van Opdenbosch, D.; Johannes, M.; Wu, X.; Fabritius, H.; Zollfrank, C.: Fabrication of high-temperature resistant threedimensional photonic crystals with tunable photonic properties by biotemplating. 4, pp. 516 - 522 (2012)
Fabritius, H.; Sachs, C.; Romano, P.; Raabe, D.: Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the lobster Homarus americanus. Advanced Materials 21, pp. 391 - 400 (2009)
Al-Sawalmih, A.; Li, C.; Siegel, S.; Fabritius, H.; Yi, S. B.; Raabe, D.; Fratzl, P.; Paris, O.: Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster. Advanced Functional Materials 18 (20), pp. 3307 - 3314 (2008)
Sachs, C.; Fabritius, H.; Raabe, D.: Influence of the microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. Journal of Structural Biology 161, pp. 120 - 132 (2008)
Boßelmann, F.; Romano, P.; Fabritius, H.; Raabe, D.: The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochimica Acta 463 (1-2), pp. 65 - 68 (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Materials degradation due to wear and corrosion is a major issue that can lead to efficiency loss or even failure. As wear may accelerate corrosion and corrosion may accelerate wear, this interaction is of increasing interest in the wind, hydroelectric, oil and gas energy domains and in the bio-medical field.
In this project, the hydrogen embrittlement mechanisms in several types of high-entropy alloys (HEAs) have been investigated through combined techniques, e.g., low strain rate tensile testing under in-situ hydrogen charging, thermal desorption spectroscopy (TDS),...
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…