Kishida, K.; Okutani, M.; Suzuki, H.; Inui, H.; Heilmaier, M.; Raabe, D.: Room-temperature deformation of single crystals of the sigma-phase compound FeCr with the tetragonal D8b structure investigated by micropillar compression. Acta Materialia 249, 118829 (2023)
Li, X.; Schmitt, A.; Heilmaier, M.; Stein, F.: The Effect of the Ternary Elements B, Ti, Cr, Cu, and Mo on Fully Lamellar FeAl + FeAl2 Alloys. Journal of Alloys and Compounds 722, pp. 219 - 228 (2017)
Li, X.; Scherf, A.; Heilmaier, M.; Stein, F.: The Al-Rich Part of the Fe–Al Phase Diagram. Journal of Phase Equilibra and Diffusion 37 (2), pp. 162 - 173 (2016)
Krein, R.; Palm, M.; Heilmaier, M.: Characterization of microstructures, mechanical properties, and oxidation behavior of coherent A2 + L21 Fe–Al–Ti. Journal of Materials Research 24 (11), pp. 3412 - 3421 (2009)
Heilmaier, M.; Krüger, M.; Pyczak, F.; Schloffer, M.; Stein, F. (Eds.): Intermetallics 2023. Intermetallics 2023, Bad Staffelstein, Germany, October 02, 2023 - October 06, 2023. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2023), 122 pp.
Heilmaier, M.; Krüger, M.; Palm, M.; Pyczak, F.; Stein, F. (Eds.): Intermetallics 2021. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2021), 208 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2019. Intermetallics 2019, Educational Center Kloster Banz, Bad Staffelstein, Germany, September 30, 2019 - October 04, 2019. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2019)
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2017. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Congressmanagement & Marketing GmbH, Jena, Germany (2017), 220 pp.
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…
Materials degradation due to wear and corrosion is a major issue that can lead to efficiency loss or even failure. As wear may accelerate corrosion and corrosion may accelerate wear, this interaction is of increasing interest in the wind, hydroelectric, oil and gas energy domains and in the bio-medical field.
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.