Yan, D.; Tasan, C. C.; Raabe, D.: High resolution strain mapping coupled with EBSD during in-situ tension in SEM. Interdisciplinary Center for Advanced materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany (2013)
Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Microstructural and Mechanical Characterization of Cold Work Effects in GUM Metal. 9th International Conference on Advances in Experimental Mechanics, Cardiff, UK (2013)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: Stress-strain partitioning in martensitic-ferritic steels analyzed by integrated full-field crystal plasticity simulations and high resolution in situ experiments. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: Coupled high resolution strain and microstructure mapping based on digital image correlation and electron backscatter diffraction. IMPRS-SurMat Seminar, Meschede, Germany (2013)
Tasan, C. C.; Hoefnagels, J. P. M.; Raabe, D.: Quantative damage analysis & in-situ testing to investigate cut-edge failures in AHSS. Cut-edge behavior and damage resistance of AHSS, Maizières-lès-metz, France (2013)
Koyama, M.; Tasan, C. C.; Akiyama, E.; Tsuzaki, K.; Raabe, D.: Influence of hydrogen on dual-phase steel micro-mechanics. 2nd International Workshop on Physics-Based Modelling of Material Properties & Experimental Observations, Antalya, Turkey (2013)
Scharifi, E.; Tasan, C. C.; Hoefnagels, J. P. M.; Raabe, D.: Microstructural analysis of strain rate sensitivity of dual-phase steel. Materials Science Engineering (MSE) 2012, Darmstadt, Germany (2012)
Tasan, C. C.: Multi-scale (in-situ) investigation of Adaptive Structural Materials. École Seminar, Nationale Supérieure des Mines de St-Étienne, St-Etienne, France (2012)
Tasan, C. C.; Zaefferer, S.; Raabe, D.: In-situ investigations of small strain plasticity in dual-phase steel. 23rd International Congress of Theoretical and Applied Mechanics (ICTAM), Beijing, China (2012)
Moerman, J.; Romano, P.; Tasan, C. C.; van Liempt, P.: Evaluation of geometrically necessary dislocations density (GNDD) near phase boundaries in dual phase steels by means of EBSD. International Conference on the Textures of Materials, ICOTOM 16, Bombay, India (2011)
Zaefferer, S.; Jäpel, T.; Tasan, C. C.; Konijnenberg, P.: Detailed observation of martensite transformation and twinning in TRIP and TWIP steels using advanced SEM diffraction techniques. ICOMAT 2011, Osaka, Japan (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.