Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H. T.; Meyer, V.; Mayrhofer, K. J. J.; Hassel, A. W.; Stratmann, M.; Widdel, F.: Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental Microbiology 14 (7), pp. 1772 - 1787 (2012)
Katsounaros, I.; Mayrhofer, K. J. J.: The influence of non-covalent interactions on the hydrogen peroxide electrochemistry on platinum in alkaline electrolytes. Chemical Communications 48 (53), pp. 6660 - 6662 (2012)
Klemm, S. O.; Fink, N.; Mayrhofer, K. J. J.: Mit Hochdurchsatz auf der Suche nach neuen Katalysatoren. Nachrichten aus der Chemie 60 (5), pp. 535 - 538 (2012)
Klemm, S. O.; Pust, S.; Hassel, A. W.; Hüpkes, J.; Mayrhofer, K. J. J.: Electrochemical texturing of Al-doped ZnO thin films for photovoltaic applications. J. Sol. State Electrochem. 16 (1), pp. 283 - 290 (2012)
Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.: Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochemistry Communications 13 (12), pp. 1533 - 1535 (2011)
Schlögl, K.; Mayrhofer, K. J. J.; Hanzlik, M.; Arenz, M.: Identical-location TEM investigations of Pt/C electrocatalyst degradation at elevated temperatures. Journal of Electroanalytical Chemistry 662 (2), pp. 355 - 360 (2011)
Nesselberger, M.; Ashton, S.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J. J.; Arenz, M.: The particle size effect on the oxygen reduction reaction activity of Pt catalysts: Influence of electrolyte and relation to single crystal models. Journal of the American Chemical Society 133 (43), pp. 17428 - 17433 (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...