Hassel, A. W.; Lohrengel, M. M.: Spatially Resolved Pulse and Impedance Transients at Structured Oxide Films. 1st International Symposium on Electrochemical Microsystem Technologies, Düsseldorf / Grevenbroich, Germany (1996)
Forker, H.; Hassel, A. W.; Lohrengel, M. M.: Elektrochemische Messungen in bewegten Tropfen. InCom 96, Sondersymposium "Elektrochemische und Spektroskopische Analyse strukturierter Oberflächen am Beispiel von Sensoren und Werkstoffen", Düsseldorf, Germany (1996)
Forker, H.; Hassel, A. W.; Lohrengel, M. M.: Ortsaufgelöste Elektrochemische Untersuchungen mit einem bewegten Elektrolyttropfen. 60. Bunsenkolloquium, "Struktur und Reaktivität von Elektrodenoberflächen", Jena, Germany (1995)
Hassel, A. W.; Lohrengel, M. M.: Ladungstransport in ultra-dünnen Oxidschichten. 60. Bunsenkolloquium, "Struktur und Reaktivität von Elektrodenoberflächen", Jena, Germany (1995)
Diesing, D.; Hassel, A. W.: Electron Tunneling Through Thin Aluminium Oxide Films. The Dielectrics Society 1995 Conference in conjunction with The Electrochemistry Group of the Royal Society of Chemistry, Impedance Spectroscopy at Electrodes and Interfaces, Canterbury, UK (1995)
Hassel, A. W.; Lohrengel, M. M.: Electrochemical Investigations in a Scanning Droplet. The Dielectrics Society 1995 Conference in conjunction with The Electrochemistry Group of the Royal Society of Chemistry, Impedance Spectroscopy at Electrodes and Interfaces, Canterbury, UK (1995)
Lohrengel, M. M.; Rüße, S.; Hassel, A. W.; Diesing, D.: Dielectric Relaxation in Anodic Valve Metal Oxide Films. The Dielectrics Society 1995 Conference in conjunction with The Electrochemistry Group of the Royal Society of Chemistry, Impedance Spectroscopy at Electrodes and Interfaces, Canterbury, UK (1995)
Hassel, A. W.; Lohrengel, M. M.: Current and Impedance Transients for the Investigation of Ultra Thin Anodic Valve Metal Oxide Films. 31. AGEF Seminar, Bonn, Germany (1994)
Lohrengel, M. M.; Hassel, A. W.: Investigation of Ultra Thin Anodic Valve Metal Oxide Films by Time Resolved Impedance Spectroscopy. 45th Meeting of the International Society of Electrochemistry, Porto, Portugal (1994)
Hassel, A. W.; Lohrengel, M. M.: Preparation and Properties of Ultra Thin Anodic Valve Metal Oxide Films. 7th International Symposium on Passivity, Clausthal-Zellerfeld, Germany (1994)
Hassel, A. W.; Lohrengel, M. M.: Proton Mobility in Valve Metal Oxides. 44th Meeting of the International Society of Electrochemistry, Berlin, Germany (1993)
Kainuma, R.; Palm, M.; Inden, G.: Experimentelle Untersuchungen der Hochtemperaturgleichgewichte im System Ti–Al. DGM Hauptversammlung 1993, Friedrichshafen, Germany (1993)
Brink, T.: Thermodynamics. Lecture: Lecture on Thermodynamics, Max Planck Institut für Eisenforschung (demnächst Max Planck Institute for Sustainable Materials), 4 lectures à 2 h, Düsseldorf, Germany, May 14, 2024 - June 11, 2024
The Department of Interface Chemistry and Surface Engineering (GO) is mainly focussing on corrosion and electrochemical energy conversion. It is internationally known to be one of the leading groups in the field of electrochemical sciences. Our mission is to combine both fundamental and applied sciences to tackle key-questions for a progress…
Plasticity, fatigue, and fracture of materials arise from localized deformation processes, which can be altered by the materials’ environment. Unravelling these mechanisms at variable temperatures and different atmospheres (like hydrogen), are essential to enhance mechanical performance and lifespan. This requires to understand the microstructure and its evolution down to the atomic level. The department is dedicated to crafting materials with superior mechanical properties by elucidating deformation mechanisms. This involves employing advanced transmission electron microscopy techniques and conducting nano-/micromechanical tests on complex, micro-architectured and/or miniaturized materials.
The department ‘Microstructure Physics and Alloy Design’ investigates the fundamentals of the relations between synthesis, microstructure and properties of often complex nanostructured materials. The focus lies on metallic alloys such as aluminium, titanium, steels, high and medium entropy alloys, superalloys, magnesium, magnetic and thermoelectric…
The mission of the Department Computational Materials Design (CM) is to develop and apply multi-scale computational methods that bridge the quantum mechanical foundations of matter with real-world materials discovery.