Piehl, C.: Der Einfluss der Mikrostruktur von Chromstählen auf die Chromdiffusion und die erste Oxidbildung. Dissertation, Universität Dortmund, Dortmund (2002)
Schlüter, T.: Wasserstoffaufnahme während des Beizens und des Glühens von warmgewalztem Stahlband vor der Feuerverzinkung. Dissertation, University Dortmund, Dortmund (2001)
Wolff, C.: Der tribologisch asymmetrische Flachstauchversuch - Eine neue Methode zur Analyse von Reibungsvorgängen bei Umformprozessen. Dissertation, RWTH Aachen, Aachen, Germany (2001)
Herbig, M.: Hüftimplantate: Ein werkstoffwissenschaftlicher Blick auf Geschichte, Möglichkeiten und Limitationen. Habilitation, RWTH Aachen University (2021)
Kirchlechner, C.: Dislocation Slip Transfer Mechanism: Quantitative Insights from in situ Micromechanical Testing. Habilitation, Montanuniversität Leoben, Austria (2018)
Rohwerder, M.: Wasserstoff in Metallen: neue Messverfahren zum Nachweis mit hoher räumlicher Auflösung. Habilitation, Ruhr-Universität Bochum, Bochum, Germany (2016)
Roters, F.: Advanced material models for the crystal plasticity finite element method - Development of a general CPFEM framework. Habilitation, RWTH Aachen, Fakultät für Georessourcen und Materialtechnik, Aachen, Germany (2011)
Winning, M.: Grain Boundary Mechanics: Interactions between mechanical stresses and grain boundaries - New approaches to microstructure control and materials design –. Habilitation, RWTH Aachen, Aachen, Germany (2007)
Grundmeier, G.: Interface Analysis and Engineering of Thin Functional Films on Metals. Habilitation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2006)
Stechmann, G.: Compatibility between Molten Salts and Materials in Concentrated Solar Power Plants. Diploma, École Nationale Supérieure de Chimie de Lille, Lille, France (2013)
Hausmann, K.: Cementite in Ferrite from First-Principles: Influence of Substitutional Impurities on Thermodynamic Stability. Diploma, RWTH Aachen, Aachen, Germany (2011)
Diehl, M.: A Spectral Method Using Fast Fourier Transform to Solve Elastoviscoplastic Mechanical Boundary Value Problems. Diploma, TUM, München, Germany (2010)
The Department of Interface Chemistry and Surface Engineering (GO) is mainly focussing on corrosion and electrochemical energy conversion. It is internationally known to be one of the leading groups in the field of electrochemical sciences. Our mission is to combine both fundamental and applied sciences to tackle key-questions for a progress…
Plasticity, fatigue, and fracture of materials arise from localized deformation processes, which can be altered by the materials’ environment. Unravelling these mechanisms at variable temperatures and different atmospheres (like hydrogen), are essential to enhance mechanical performance and lifespan. This requires to understand the microstructure and its evolution down to the atomic level. The department is dedicated to crafting materials with superior mechanical properties by elucidating deformation mechanisms. This involves employing advanced transmission electron microscopy techniques and conducting nano-/micromechanical tests on complex, micro-architectured and/or miniaturized materials.
The department ‘Microstructure Physics and Alloy Design’ investigates the fundamentals of the relations between synthesis, microstructure and properties of often complex nanostructured materials. The focus lies on metallic alloys such as aluminium, titanium, steels, high and medium entropy alloys, superalloys, magnesium, magnetic and thermoelectric…
The mission of the Department Computational Materials Design (CM) is to develop and apply multi-scale computational methods that bridge the quantum mechanical foundations of matter with real-world materials discovery.