Sustainable Metals

Format: 45min talk followed by 45min discussion. Where: virtual on Zoom (link follows) [more]
Where: virtual on Zoom (link follows) [more]

Nanoindentation at High Strain Rates: Challenges and recent advances

  • Date: Feb 23, 2021
  • Time: 13:30
  • Speaker: Dr. Benoit Merle
  • Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films IZNF, Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
  • Location: Virtual Lecture
  • Host: Prof. Gerhard Dehm
Where: virtual on Zoom (link follows) [more]

"Coffee with Max Planck" seminar series

Group leaders from the MPIE’s four research departments will hold weekly lunch-time seminars on their hot-topics in this seminar series. [more]

What does Gender have to do with Physics?

This talk will give some examples on how you can approach the question on “what does gender have to do with Physics?”. [more]

7th International Symposium on Computational Mechanics of Polycrystals, CMCn 2020 and DAMASK User Meeting

7th International Symposium on Computational Mechanics of Polycrystals, CMcn 2020
CMCn2020 The Max-Planck-Institut für Eisenforschung in Düsseldorf is organizing the 7th International Symposium on Computational Mechanics of Polycrystals and we would like to invite you and your research colleagues to participate in this event. This symposium is part of a biannual series of ... [more]
We are happy to announce and welcome you this year to an online seminar in place for the BiGmax workshop on Big-Data-Driven Materials Science. We were enlightened by your interest in the workshop back then in April. With the global Covid19 pandemic now, the online workshop will be slightly shorter ... [more]

Sustainable Metallurgy

MPIE Seminar
Metallic materials which have enabled progress over thousands of years and are produced in huge quantities (e.g. 1.8 billion tons of steels per year), are now facing severe and in part abrupt limits set by sustainability constraints and the associated legislative measures. Accelerated demand for ... [more]
The Max-Planck-Institut für Eisenforschung GmbH (MPIE) and Bruker are pleased to announce Nanobrücken 2020: Nanomechanical Testing Conference & Bruker User Meeting, which will take place February 4–6 at MPIE located in Düsseldorf, Germany. Please save the date in your calendar and register to secure ... [more]
Utilizing molecular dynamics simulations, we report a non-monotonic dependence of the shear stress on the strength of an external magnetic eld (H) in a liquid-crystalline mixture of magnetic and non-magnetic anisotropic particles.This non-monotonic behavior is in sharp contrast with the well-studied ... [more]
The Max-Planck-Institut für Eisenforschung GmbH in Düsseldorf is organizing the 5th NRW-APT user meeting on November the 07th 2019 and we would like to invite you and your research colleagues to participate in this event. This meeting will bring together scientists from North Rhine-Westphalia ... [more]
The workshop aims to provide a forum for researchers who are interested in applying advanced imaging and spectroscopy methods of electron microscopy, including aberration-corrected, in situ, environmental and low-voltage electron microscopy, to topical issues in materials science and engineering, in ... [more]

Pushing the boundaries of micro and nanomechanics

Pushing the boundaries of micro and nanomechanics
Current level of miniaturization in everyday devices indicates that micro and nano architectures have become functional elements in electronics and diminutive mechanical-based systems. Yet, the potential of such multiscale functional elements is not fully realized due to incomplete understanding of ... [more]

Manipulation of individual defects in 2D and layered Materials

Manipulation of individual defects in 2D and layered Materials
Defects decisively influence the properties of virtually any material. It is therefore desirable to control the occurrence and properties of defects down to the atomic scale. While many methods have been successfully developed to influence defects in an indirect way (e.g. heat treatments, ion ... [more]

Multi-scale design and analyses of advanced materials: Experimental approaches

Multi-scale design and analyses of advanced materials: Experimental approaches
When a 100-tonne steel forging die fails during industrial processing; the root causes are often localised to small length scales. Advanced materials therefore need to be designed at the characteristic material length scales; incorporating environmental considerations such as local defects or ... [more]

Close Packed Phases in Nickel-Based Superalloys - Investigation by Diffusion Multiples

Close Packed Phases in Nickel-Based Superalloys - Investigation by Diffusion Multiples
Precipitation of close-packed phases is a common problem of modern nickel-based superalloys, containing refractory or higher melting point elements such as Re, Ru, Cr, Mo and W. Thus, a fundamental understanding of phase stabilities of close-packed phases governed by these elements is of high ... [more]

Lessons learned from nano scale specimens tested by MEMS based apparatus

Lessons learned from nano scale specimens tested by MEMS based apparatus
Materials at small scale behave differently from their bulk counterparts. This deviation originates from the abundance of interfaces at small scale. Quantifying the properties and revealing the underlying mechanisms requires experiments with small samples in situ in analytical chambers. However ... [more]

Molecular dynamics simulations and beyond for plasticity and wear of metals

Molecular dynamics simulations and beyond for plasticity and wear of metals
While the general principles underlying the plastic response of metals are mostly understood—especially for the crystalline state—advanced tailoring of their properties and the development of novel, high-performance materials requires detailed insights into the mechanisms at the atomic scale. This ... [more]

Using analytical electron microscopy to study microstructural evolution and its effect on structural & functional properties

Using analytical electron microscopy to study microstructural evolution and its effect on structural & functional properties
Analytical electron microscopy is applied to study elementary processes which govern micro- and nanostructural evolution and their effect on structural and functional properties in two-phase material systems. Modern computational alloy design for application relevant blade materials operating at ... [more]

MPIE-Kolloquium: Sustainable Molten Salt Route for Electro-extraction & Electro-refining of Low-grade Ores to Yield High Purity Titanium

Sustainable Molten Salt Route for Electro-extraction & Electro-refining of Low-grade Ores to Yield High Purity Titanium
Titanium is the fourth most abundant engineering material in the Earth’s crust. Although it has many beneficial properties, the cost of extraction remains a challenge and over 90% of high grade titanium is derived from the expensive and time-consuming Kroll Process. Electro-refining methods show ... [more]

Exploring the Solar System: From the Nano to Astronomical Scale

MPIE Colloquium
Microscopy, by definition, is the science of using a microscope to observe objects that are unseen by the naked eye. However, astronomical objects such as planets, moons and comets or asteroids are easily identifiable in the night sky, yet scientists are increasingly relying on microscopic methods ... [more]

Micromechanics of bone: fundamental research and clinical applications

Micromechanics of bone: fundamental research and clinical applications
In this talk, the work within the Biomechanics Research Team at the Laboratory for Mechanics of Materials and Nanostructures of Empa on micromechanics of bone will be presented. Fundamental research on the failure mechanisms of bone on the microscale as a function of loading mode will be discussed ... [more]

Deformation mechanisms in metals under a tribological load

In 1950, Bowden and Tabor pointed out that in metallic tribological contacts the majority of the dissipated energy is spend to change the contacting materials’ microstructures. This – in part – explains why most metals show a highly dynamic subsurface microstructure under the shear load imposed by ... [more]

Joint MPIE / ER-C workshop on recent advances and frontiers of atomic scale characterization

Joint MPIE / ER-C workshop on recent advances and frontiers of atomic scale characterization

Aberration-corrected STEM and ultra-high energy resolution EELS

Aberration-corrected STEM and ultra-high energy resolution EELS
Electron microscopy has advanced very significantly in the last two decades. Electron-optical correction of aberrations, which we introduced for the scanning transmission electron microscope (STEM) in 1997, has allowed STEMs to reach sub-Å resolution from 2002 on. It has led to new STEM ... [more]

Making quantum transport visible in thermoelectric Bi2Te3 nanoparticles

Bi2Te3, Sb2Te3, and Bi2Se3, well established thermoelectric materials, are also three-dimensional (3D) topological insulators (TI) exhibiting a bulk bandgap and highly conductive, robust, gapless surface states. While the transport properties of 3D TIs are of utmost importance for potential ... [more]

Nanoindentation based investigations of PLC-type plastic instability

Nanoindentation based investigations of PLC-type plastic instability
Portevin Le-Chatelier (PLC) effect is a type of plastic instability that results in severe strain localization, reduction in ductility and formation of surface striations during forming operations. Understanding the underlying microscopic mechanism(s) that govern it requires detailed experimental ... [more]

The Heusler System (For Thermoelectric Application): How You Can Use the periodic table As A Lego Box To Build The States You Are Interested In

The Heusler System (For Thermoelectric Application): How You Can Use the periodic table As A Lego Box To Build The States You Are Interested In
The periodic table becomes one hundred years old just this year. The family of Heusler compounds uses nearly all the elements in the Periodic Table to allow for the design of materials with all sorts of properties. These include: hard and soft magnets, shape memory and magnetocaloric metals ... [more]

HEA symposium "High entropy and compositionally complex alloys" at DPG Spring Meeting 2019 in Regensburg

HEA symposium "High entropy and compositionally complex alloys" at DPG Spring Meeting 2019 in Regensburg

4th International Conference on Medium and High Manganese Steels

4th International Conference on Medium and High Manganese Steels

TEM Studies on Materials with a Negative Poisson’s Ratio

TEM Studies on Materials with a Negative Poisson’s Ratio

Computational Modeling of Moving Boundary Problems

MPIE Seminar
The focus of this presentation is on computational methods for moving boundary/interface problems and its applications including fracture, fluid structure interaction, inverse analysis and topology optimization. First, two computational methods for dynamic fracture will be presented, i.e. the ... [more]
Perovskite oxides exhibit a plethora of fascinating electronic material properties covering an exceptionally wide range of phenomena in solid state and surface physics. This has led to tremendous efforts to functionalize these materials in applications for energy technology, gas sensing, and ... [more]

Opportunities for bcc refractory-metal superalloys

Reinforcement with ordered intermetallic precipitates is a potent strategy for the development of strength alongside damage tolerance and is central to the success of fcc nickel-based superalloys. Such a strategy is equally of interest within bcc-based systems for their increased melting point and ... [more]

Phase Transitions in Non-Equilibrium Metallic Systems

Seminar Talk
Nearly all classes of materials show non-equilibrium phase transitions and the first technological use of quenching metals for designing properties is documented as ~800 BC. However, the decomposition towards equilibrium is still difficult to understand due to the strong non-equilibrium kinetics ... [more]

Dislocation-based Functionality in Oxides

MPIE Colloquium
Dislocations in oxides are typically heavily charged and are surrounded by compensating electric charges. As such they are kinetically more stable than chemical dopants. Adepalli et al. termed dislocations a means for “one-dimensional doping” [1]. As they are often introduced by mechanical methods ... [more]

Recent Advances in Heat-resistant Structural Material Development with Laves Phases at Oak Ridge National Laboratory

MPIE Colloquium
This presentation provides an overview of recent developmental efforts at Oak Ridge National Laboratory (ORNL) on heat-resistant ferrous materials with Laves-phase strengthening for fossil-fired energy conversion systems. Laves phases are attractive as second-phase strengtheners in Fe-base alloys ... [more]

International Workshop on Laves Phases

International Workshop on Laves Phases
Laves phases constitute the largest class of intermetallic phases. Within the inter-institutional research initiative “The Nature of Laves Phases” of the Max Planck Society (2006-2011) fundamental aspects of Laves phases have been investigated. Since then, advances in high resolution analytical ... [more]

3D Nano-Architected Metamaterials

MPIE Colloquium
Advances in 3D additive manufacturing techniques have enabled the fabrication of nanostructures with remarkable mechanical properties. Using the latest 3D printing techniques, novel material structures with specific architectures, often referred to as metamaterials, can be produced. They can ... [more]

Molecular dynamics on the diffusive time scale

Molecular dynamics on the diffusive time scale
We formulate a theory of non-equilibrium statistical thermodynamics for ensembles of atoms or molecules. The theory is an application of Jayne's maximum entropy principle, which allows the statistical treatment of systems away from equilibrium. In particular, neither temperature nor atomic fractions ... [more]

Hydrogen storage in single metal nanocrystals

MPIE Colloquium
In the European atom probe tomography workshop we aim to foster the exchange of new ideas in atom probe tomography and field ion microscopy community, especially those aspects not regularly covered in scientific publications. We therefore put special emphasis on peer-to-peer discussions around ... [more]

Opening Symposium for Advanced S/TEM and APT Facilities

Opening Symposium for Advanced S/TEM and APT Facilities
The Max-Planck-Institut für Eisenforschung GmbH (MPIE) is happy to announce the opening symposium for advanced S/TEM and APT facilities, scheduled on 5th - 6th November 2018. We are pleased to celebrate this inauguration by a stimulating scientific colloquium with renowned experts and friends from ... [more]

MPIE Workshop: Mechanisms of White Etching Matter Formation

MPIE Workshop: Mechanisms of White Etching Matter Formation
The Max-Planck-Insititut für Eisenforschung in Düsseldorf cordially invites academic and industrial researchers to the workshop on WEM formation, taking place on October 23nd 2018. This workshop will focus on the fundamental materials scientific processes behind this phenomenon. For this we have ... [more]

Atomic Electron Tomography Using Coherent and Incoherent Imaging in (Scanning) Transmission Electron Microscopy

Atomic Electron Tomography Using Coherent and Incoherent Imaging in (Scanning) Transmission Electron Microscopy

Metal and Alloy Nanoparticles from Ultrafast, Scalable, Continuous Synthesis and their Downstream Integration in Catalysis and Additive Manufacturing

Metal and Alloy Nanoparticles from Ultrafast, Scalable, Continuous Synthesis and their Downstream Integration in Catalysis and Additive Manufacturing

Symposium "Experiments and Simulations Towards Understanding Tribology Across Length-Scales" at the MSE (Materials Science Engineering)

Symposium "Experiments and Simulations Towards Understanding Tribology Across Length-Scales" at the MSE (Materials Science Engineering)
In this talk the contribution of molecular simulations and in particular non-equilibrium molecular dynamics (NEMD) modelling techniques providing unique insights into the nanoscale behaviour of lubricants is discussed. NEMD has progressed from a tool to corroborate theories of the liquid state to an ... [more]

Topological Optimization and Textile Manufacturing of 3D Lattice Materials

Topological Optimization and Textile Manufacturing of 3D Lattice Materials
Recent advances in topological optimization methodologies for design of internal material architecture, coupled with the emergence of micro- and nanoscale fabrication processes, 3D imaging, and micron scale testing methodologies, now make it possible to design, fabricate, and characterize lattice ... [more]

6th International Symposium on Computational Mechanics of Polycrystals, CMCn 2018 and DAMASK User Meeting

6th International Symposium on Computational Mechanics of Polycrystals, CMCn 2018
CMCn2018 The Max-Planck-Institut für Eisenforschung in Düsseldorf is organizing the 6th International Symposium on Computational Mechanics of Polycrystals and we would like to invite you and your research colleagues to participate in this event. This symposium is part of a biannual series of ... [more]
Thermoelectric materials can convert waste heat into electricity, which is of significant technological and environmental interest. In my talk I will give a short introduction into the field of thermoelectrics including the measurement of the thermoelectric properties of bulk materials at low and ... [more]

Use of computational and physical simulation on arc welding heat affected zone microstructure evolution studies

Use of computational and physical simulation on arc welding heat affected zone microstructure evolution studies
The heat affected zone (HAZ) is most commonly the critical part of welding joint and the comprehension of the thermal cycle it suffers during welding and its effects on the final microstructure is fundamental to predict and reduce the properties degradation on that zone. The traditional approach to ... [more]
Heterogeneous deformation in metallic polycrystals arises from several factors, including anisotropy in elastic properties and plastic slip. The ability to accurately simulate heterogeneous deformation requires physically based models of slip that includes grain boundary properties, as grain ... [more]

Iron Nitrides and Carbides: Phase Equilibria, Crystallography, and Phase Transformations

MPIE Colloquium

Heterogeneous Catalysis: Not Always Supported Metallic Nanoparticles

MPIE Colloquium

Gordon Research Conference “Thin Film and Small Scale Mechanical Behavior”

Gordon Research Conference “Thin Film and Small Scale Mechanical Behavior”

Mini‐symposium “Experimental Micromechanics and Nanomechanics” at the “10th edition of the European Solids Mechanics Conference”

Mini‐symposium “Experimental Micromechanics and Nanomechanics” at the “10th edition of the European Solids Mechanics Conference”

Martensitic Microstructure: Modern Art or Science?

MPIE Colloquium

Additive Manufacturing, 3D Printing, Porosity and Synchrotron Experiments

Additive Manufacturing, 3D Printing, Porosity and Synchrotron Experiments
3D printing of metals has advanced rapidly in the past decade and is used across a wide range of industry. Many aspects of the technology are considered to be well understood in the sense that validated computer simulations are available. At the microscopic scale, however, more work is required to ... [more]

Quantum Chemistry in Position Space and Chemical Bonding in Intermetallic Compounds

MPIE Colloquium

Symposium “Mechanical Properties and Adhesion 45th ICMCTF (International Conference on Metallurgical Coatings and Thin Films)

Symposium “Mechanical Properties and Adhesion 45th ICMCTF (International Conference on Metallurgical Coatings and Thin Films)

In Situ Investigation of the Dynamic Evolution of Materials and Interfaces in Energy Storage Systems

Abstract: In energy storage devices, materials evolve from their initial state due to electrochemical reactions and interfacial instabilities at interfaces. To develop batteries with improved safety, energy density, and lifetime, it is critical to understand transformation mechanisms and ... [more]

High Temperature Materials - Recent Developments for Future Challenges

MPIE Colloquium
The introduction of the talk provides an overview on materials research in IEK-2 (Institute for Energy and Climate Research, Materials Characterization) in Forschungszentrum Jülich. Selected examples of metallic and ceramic high performance materials for applications in energy conversion and storage ... [more]

Topic day “Novel materials and alloy design - microstructure property relationship” at the Metallkundekolloquium/Arlbergkolloquium

Topic day “Novel materials and alloy design - microstructure property relationship” at the Metallkundekolloquium/Arlbergkolloquium

“Experimental Nanomechanics” at the “16th European Mechanics of Materials Conference”

“Experimental Nanomechanics” at the “16th European Mechanics of Materials Conference”

Topical session “Mechanical Properties at Small Scales” at the DPG-Spring Meeting 2018

Topical session “Mechanical Properties at Small Scales” at the DPG-Spring Meeting 2018

Nanoindentation for Investigating Dynamics of Shear Bands in Metallic Glasses

MPIE Colloquium
Deformation in metallic glasses occurs by initiation and propagation of multiple thin shear bands. This mode is rather difficult to analyse since generally, a single band soon propagates to a large extent in the specimen leading to a catastrophic failure. Exceptions are for example in creep tests ... [more]

Topic day “Dislocation based plasticity – experiment vs. simulation” at “The Schöntal Symposium Dislocation-based Plasticity” of the DFG Forschergruppe FOR 1650

Topic day “Dislocation based plasticity – experiment vs. simulation” at “The Schöntal Symposium Dislocation-based Plasticity” of the DFG Forschergruppe FOR 1650

Mechanism of Enhanced Ductility in Mg Alloys

Mechanism of Enhanced Ductility in Mg Alloys
Pure Mg has low ductility due to strong plastic anisotropy and due to a transition of <c+a> pyramidaldislocations to a sessile basal-oriented structure [1]. Alloying generally improves ductility; for instance, Mg-3wt.%RE (RE=Y, Tb, Dy, Ho, Er) alloys show relatively high ductility [2], and typically ... [more]

Early stages of high temperature oxidation and sulphidation studied by synchrotron X-ray diffraction and spectroscopy

Early stages of high temperature oxidation and sulphidation studied by synchrotron X-ray diffraction and spectroscopy
Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in thermal power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres which lead to a change of the material ... [more]

"Mechanics meets Energy VI” symposium at Kloster Steinfeld/Eifel

"Fundamentals of mechanical response" at the Conference on Electronic and Advanced Materials

Fundamentals of mechanical response

Atomistic modeling of grain boundary segregation in transition metals

Atomistic modeling of grain boundary segregation in transition metals
The Max-Planck-Institut für Eisenforschung GmbH in Düsseldorf is organizing the 4th NRW-APT user meeting on November the 23rd 2017 and we would like to invite you and your research colleagues to participate in this event. This meeting will bring together scientists from North Rhine-Westphalia ... [more]

Synthesis and characterization of tungsten-based composites for high-temperature applications

Synthesis and characterization of tungsten-based composites for high-temperature applications

Insights into the Role of Mechanics on Diffusion-Controlled Phase Transformations using Phase Field Models

MPIE Colloquium
The role played by the microstructures ensuing from phase transformations on the mechanical properties is now very well documented and thoroughly studied, in particular in metallic alloys. Although there is also a large number of works devoted to the reverse, i.e. the influence of mechanics on the ... [more]

Application of Scientific Principles to Aluminium Automotive Sheet

Abstract Aluminium has been used in the manufacture of automobiles for more than 100 years and current usage averages more than 150kg per vehicle. Recent demands for higher fuel economy, improved vehicle performance, and lower CO2 emissions are currently driving a dramatic increase in the usage of ... [more]

Shear bands in metallic glasses: what are they, how to find them?

The plastic deformation in metallic glasses proceeds through the activation and sliding of shear bands (SBs). A better plasticity in metallic glasses can be achieved through the enhancement of SB stability and proliferation. Therefore, efforts have been made to understand the true nature of SBs in ... [more]

Diffusion and segregation of solutes in grain boundaries: from pure metals to high-entropy alloys

Diffusion and segregation of solutes in grain boundaries: from pure metals to high-entropy alloys

Phase-field Modeling of Polycrystalline Structures: From Needle Crystals to Spherulites Phase-field Modeling of Polycrystalline Structures: From Needle Crystals to Spherulites

MPIE Colloquium
Results in modeling complex polycrystalline structures by phase-field models that monitor the local crystallographic by scalar or vector orientation fields will be reviewed. The applied models incorporate homogeneous and heterogeneous nucleation of growth centers, and several mechanisms to form new ... [more]

Variational Methods in Material Modeling: Applications of Hamilton’s Principle

The aim of modern material modeling is the realistic prediction of the behavior of materials and construction parts by numerical simulation. Experimental investigations prove that the microstructure and thus the mechanical properties may vary under loads. It is thus essential to describe the ... [more]

International conference “Intermetallics 2017”

International conference “Intermetallics 2017”

Complex multicomponent alloys: coupled structural and mechanical study of a bcc model alloy, and possible improvement path

A lot of research effort has now been dedicated to the study of complex multicomponent alloys (more commonly called High Entropy Alloys HEA). This family of materials introduced in 2004 breaks with the traditional alloying concept, since they explore the domain of concentrated solid solution(s) of ... [more]

Spatially Resolved Texture and Microstructure Evolution of Additively Manufactured and Gas Gun Deformed 304L Stainless Steel; Investigated by Neutron Diffraction and Electron Backscatter Diffraction

Spatially Resolved Texture and Microstructure Evolution of Additively Manufactured and Gas Gun Deformed 304L Stainless Steel; Investigated by Neutron Diffraction and Electron Backscatter Diffraction

Nitride coatings based on high-entropy alloys

Nitride coatings based on high-entropy alloys
The new alloying concept, known as high-entropy alloys (HEAs) or multi-principal elements alloys (MPEAs) are a new emerging class of perspective materials that possess a wide range of unique properties. Since the appearance of the first studies of HEAs, more than 1000 scientific works were ... [more]

Summer School on Experimental Nano- and Micromechanics

Summer School on Experimental Nano- and Micromechanics
The size dependent mechanical response of materials has attracted strong attention during the past decade. While past research focused mainly on single crystalline behavior, today´s investigations target the mechanical response and underlying deformation mechanisms of heterogeneous microstructures ... [more]
As Additive Manufacturing technologies are being adopted in more and more industries, the focus of research and development is shifting to the materials in use. Additionally, an increasing number of researchers in academia and industry realise the potential of Additive Manufacturing to produce ... [more]

Introducing high temperature intermetallic eutectic as potential structural materials

Introducing high temperature intermetallic eutectic as potential structural materials
Intermetallic fascinated high temperature materials community for the last five decades. Starting with gamma TiAl, both Ti based and Ni based single phase intermetallics have been subject of extensive investigation. It took five decades for actual application in latest generation GE engine. However ... [more]
The atomic and micro-scale structures of most materials are 3D, but a lack of tools for experimental 3D investigation of materials has limited most published research, including simulation and modelling, to 2D datasets. In the 21st century this situation has changed significantly. New 3D ... [more]

Symposium “Environmental, in-situ and time-resolved microscopy” at MC 2017 (Microscopy Conference 2017)

Symposium “Environmental, in-situ and time-resolved microscopy” at MC 2017 (Microscopy Conference 2017)

Size Effects in Metals: On the Role of Internal Boundaries across the Scales

MPIE Colloquium
Size effects are a key ingredient to control and improve the mechanical behaviour of metallic microstructures and miniaturized components. The analysis of size effects in metals has received continuous attention in the past two decades, both experimentally and numerically. This lecture focuses on ... [more]

Some Methods and Applications of Data-driven Inference in Materials Science Some Methods and Applications of Data-driven Inference in Materials Science

MPIE Colloquium
Experiments and simulations in materials science and engineering often generate prodigious quantities of data. Extracting information from this data turns out to be more challenging than may at first appear, prompting efforts to create innovative ways of analyzing “big data.” I will provide an ... [more]

New concepts in electrochemistry – from magnetic structuring of macroscopic layers to single nanoparticle analysis

New concepts in electrochemistry – from magnetic structuring of macroscopic layers to single nanoparticle analysis
Electrochemistry is a well-established technique for the electrodeposition of thin films for corrosion protection or of 3D structures for integrated circuits. It is also key to most approaches for sustainable energy conversion and storage and it is widely utilized in sensors for the detection and ... [more]

Phase Transformations under Rapid Heating in Metallic Micro- and Nanolaminates

Phase Transformations under Rapid Heating in Metallic Micro- and Nanolaminates

Phase-transformation effects on residual stress development in welding

Phase-transformation effects on residual stress development in welding
This presentation provides an overview of research that has been (and is being) carried out at The University of Manchester, with a focus on the role that phase transformations play in the development of stress in steel welds. There are several motivations for this research. Residual stresses play ... [more]

The Dynamics of Active Metal Catalysts Revealed by In Situ Electron MicroscopyThe Dynamics of Active Metal Catalysts Revealed by In Situ Electron Microscopy The Dynamics of Active Metal Catalysts Revealed by In Situ Electron Microscopy

The Dynamics of Active Metal Catalysts Revealed by In Situ Electron Microscopy
Conventional high-resolution imaging by electron microscopy plays an important role in the structural and compositional analysis of catalysts. However, since the observations are generally performed under vacuum and close to room temperature, the obtained atomistic details concern an equilibrium ... [more]

Publishing in Material Science - and how to Maximize your success

Publishing your research results is an integral – if not the most important – part of your research. In this talk, some insight in the publishing process at the inhouse editorial offices of the successful journal family of Advanced Materials will be given. I will clarify the workflow at a publishing ... [more]
The Max-Planck-Institut für Eisenforschung GmbH in Düsseldorf is organizing the 3rd NRW-APT user meeting on May 16th 2017 and we would like to invite you and your research colleagues to participate in this event. This meeting will bring together scientists from North Rhine-Westphalia dealing with ... [more]

Symposium “Mechanical Properties and Adhesion 44th ICMCTF (International Conference on Metallurgical Coatings and Thin Films)

Symposium “Mechanical Properties and Adhesion 44th ICMCTF (International Conference on Metallurgical Coatings and Thin Films)

Topic day “Lokale Charakterisierungsmethoden in der Werkstoffforschung” at the Metallkundekolloquium/Arlbergkolloquium

Topic day “Lokale Charakterisierungsmethoden in der Werkstoffforschung” at the Metallkundekolloquium/Arlbergkolloquium

Hydrogen Interaction in Metals

Hydrogen interaction in metals
The workshop is part of our series of one-day workshops "Frontiers in Material Science & Engineering", where we bring together leading experts from academia and industry in a workshop format that allows in-depth discussions of fundamental and applied research in this area. Places are limited to 50 ... [more]

Workshop "Frontiers in Material Science & Engineering: Hydrogen Interaction in Metals"

Workshop "Frontiers in Material Science & Engineering: Hydrogen Interaction in Metals"

MPIE-Colloquium: Complex nanostructures and nanocomposites for plasmonic and photonic applications

MPIE-Colloquium: Complex nanostructures and nanocomposites for plasmonic and photonic applications
Nanoparticles, nanowires, and many other nanostructures are produced and investigated for applications for quite some time. The desired functionality is not easy to achieve in a reproducible way. Various methods will be presented how such structures can be produced in a well defined arrangement and ... [more]

MULTICOMPONENT AND HIGH-ENTROPY ALLOYS

Conventional strategy for developing metallurgical alloys is to select the main component based on a primary property requirement, and to use alloying additions to confer secondary properties. This strategy has led to the development of many successful alloys based on a single main component with a ... [more]

MPIE Colloquium: Computing Mass Transport in Crystals: Theory, Computation, and Applications

MPIE Colloquium: Computing Mass Transport in Crystals: Theory, Computation, and Applications
The processing of materials as well as their technologically important properties are controlled by a combination of thermodynamics--which determines equilibrium--and kinetics--how a material evolves. Mass transport in solids, where different chemical species diffuse in a material due to random ... [more]

Hydrogen Storage Technology at the Helmholtz Zentrum Geesthacht

The use of fossil fuels as energy supply is growing increasingly problematic both from the point of view of environmental emissions and energy sustainability. As an alternative to fossil fuels, hydrogen is widely regarded as a key element for a potential energy solution. In this respect, hydrogen ... [more]
After a short introduction to thin film solar cells, I will review what we know about defects in Cu(InGa)Se2 (CIGS), where we found significant differences between Cu-rich and Cu-poor material. By photoluminescence we recently found fundamental differences between pure CIS and Ga containing CIGS ... [more]

Plasticity in Magnesium: Twinning and Slip Transmission

Plasticity in Magnesium: Twinning and Slip Transmission
Although magnesium is the lightest structural metal and has a great potential to be utilized in lightweight constructions, e.g. in automotive engineering, the use of wrought magnesium alloys is limited due to, inter alia, a high mechanical anisotropy and poor room temperature formability. Against ... [more]

NANO-HITEN - Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides

NANO-HITEN - Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides
A ferritic steel precipitation-strengthened by nanometer-sized carbides was developed to obtain a high strength hot-rolled sheet steel having tensile strength of 780 MPa grade with excellent stretch flange formability. Manganese in a content of 1.5 % and molybdenum in a content of 0.2 % were added ... [more]

"Mechanics meets Energy V” symposium at castle Ringberg

The Search For Charge Density Based Structure-Property Relationships

The Search For Charge Density Based Structure-Property Relationships

Unraveling the mysteries of faculty applications (in the US)

Unraveling the mysteries of faculty applications (in the US)
The application process for tenure-track university faculty positions in the US is often opaque and unclear. Job listings can be broad and vague and are sometimes difficult to find; clear guidelines for cover letters, research statements, and CVs are non-existent; interview formats vary drastically ... [more]

Investigation of Nanostructural Materials by means of X-Ray Powder Diffraction

Investigation of Nanostructural Materials by means of X-Ray Powder Diffraction
Nanostructured materials represent a well-established part of nanoscience today due to their tunable electrical, optical, magnetic and catalytic properties, and their potential in nanomedicine. There are some common techniques used for the investigation of nanomaterials, e.g. light scattering (DLS ... [more]

Predicting solute segregation kinetics and properties in binary alloys from a dynamical variational gaussian model

Predicting solute segregation kinetics and properties in binary alloys from a dynamical variational gaussian model
The thermodynamics and kinetics of solute segregation in crystals is important for controlling microstructure and properties. Prime examples are the effects of solute drag on interface migration and of static strain aging on the yield stress. A fully quantitative prediction of solute segregation is ... [more]

Doping Induced Properties of Nanocrystalline CVD Diamond Films and Particles

MPIE Colloquium

Microstructures and Mechanical Behavior of FeNiMnAl(Cr) Alloys

FeNiMnAl alloys show a wide range of microstructures and mechanical properties, but have been little explored. Studies on four different types of microstructures in this alloy system will beoutlined: 1) ultrafine microstructures (5-50 nm), present in Fe30Ni20Mn20Al30,Fe25Ni25Mn20Al30 and Fe35Ni15Mn2 ... [more]

Linking Microstructural Evolution and Tribology in Metallic Contacts

Linking Microstructural Evolution and Tribology in Metallic Contacts
The tribology community presently relies on phenomenological models to describe the various seemingly disjointed steady-state regimes of metal wear. Pure metals such as gold -- frequently used in electrical contacts - exhibit high friction and wear. In contrast, nanocrystalline metals, such as hard ... [more]

Symposium "Tribology across length-scales: Experiments and simulations" at the MSE (Materials Science Engineering)

Symposium "Tribology across length-scales: Experiments and simulations" at the MSE (Materials Science Engineering)

High-throughput with Particle Technology

High-throughput screening is a well-established method for scientific experimentation in chemistry and biology. Examples are heterogeneous catalysts, drug developments and nanoparticle toxicology. These methods involve the synthesis of small sample volumes often in form of particles that are quickly ... [more]

5th International Symposium on Computational Mechanics of Polycrystals, CMCn 2016 and first DAMASK User Meeting

5th International Symposium on Computational Mechanics of Polycrystals, CMCn 2016 and first DAMASK User Meeting
The Max-Planck-Institut für Eisenforschung in Düsseldorf is organizing the 5th International Symposium on Computational Mechanics of Polycrystals and we would like to invite you and your research colleagues to participate in this event. This symposium is part of a biannual series of symposia that ... [more]

MPIE-Colloquium: Tuning Materials Properties Through Extreme Chemical Complexity

MPIE-Colloquium: Tuning Materials Properties Through Extreme Chemical Complexity
The development of metallic alloys is arguably one of the oldest of sciences, dating back at least 3,000 years. It is therefore very surprising when a new class of metallic alloys is discovered. High Entropy Alloys (HEA) appear to be such a class furthermore, one that is receiving a great deal of ... [more]

A pull-to-bend testing technique for testing Single crystal Silicon

A pull-to-bend testing technique for testing Single crystal Silicon

MagneticMaterial Modeling for Numerical Simulation of Electrical Machines

Magnetic Material Modeling for Numerical Simulation of Electrical Machines
The development of energy efficient electrical machines requires accurate knowledge of the magnetic material behavior, i.e., iron loss components  and magnetizability, already in the design stage. In addition, knowledge on the magnetic property deterioration due to induced  residual  stresses ... [more]

Composite voxels fornonlinear mechanical problems

Composite voxels for nonlinear mechanical problems
Two-scale simulations of components classically  rely upon finite element simulations  on boundary- and interface-fitted  meshes on both the macro and the micro scale. For complex microstructures fast and memory-efficient  solvers posed on regular voxels grids, in particular the FFT-based ... [more]

In situ HR-EBSD characterization during micro-mechanical testing

In situ HR-EBSD characterization during micro-mechanical testing
Quantification of the mechanical properties of crystalline materials at micro and nano length-scales is as important as it is challenging. In situ mechanical testing inside the SEM using a micro-indenter offers the great advantage of a direct observation of the progressive deformation in materials ... [more]

Deformationmechanisms of TWIP steel: from micro-pillars to bulk samples

Deformation mechanisms of TWIP steel: from micro-pillars to bulk samples
  • Date: Jul 6, 2016
  • Time: 13:30 - 15:00
  • Speaker: Prof. Mingxin HUANG
  • Department of Mechanical Engineering, The University of Hong Kong, Hong KongShort biography of the speaker Dr. Mingxin HUANG is currently an Associate Professor at The University of Hong Kong, Hong Kong. His research interests focus on two areas: (1) fundamentals of microstructure-property relationship and phase transformation of advanced steels, and (2) development of lightweight materials for automotive applications. Both experimental and modelling works are involved in his research. His research projects have been well funded by government funding agents as well as industries from Europe and China (e.g. ArcelorMittal France, General Motors, Ansteel, Baosteel). Dr. Huang received his Bachelor as well as Master degrees from Shanghai Jiao Tong University (SJTU) in 2002 and 2004, respectively, and his PhD in 2008 from Delft University of Technology (TU Delft), The Netherlands. From 2008 to 2010, he worked as a research engineer at ArcelorMittal R&D centre in Maizieres-les-Metz, France. His research work in ArcelorMittal focused on the development of new advanced steels for automotive applications. Dr. Huang joined University of Hong Kong in 2010 as an Assistant Professor and was promoted to Associate Professor with tenure in 2016. Dr. Huang has published 50+ journal papers on major international journals in his field such as Acta Materialia and Scripta Materialia. Dr. Huang is an editorial board member of Materials Science and Technology, the Key Reader for Metallurgical and Materials Transactions A and has received twice “Outstanding Reviewer of Scripta Materialia” awards.
  • Location: Max-Planck-Institut für Eisenforschung GmbH
  • Room: Seminarraum 1
  • Host: Prof. Dierk Raabe
Twinning-induced plasticity (TWIP) steels have excellent combinationof strength and ductility and are potential lightweight materials forautomotive applications. Understanding the deformation mechanisms in TWIPsteels is essential for the successful application of TWIP steels. The firstpart of this ... [more]
Additive Manufacturing is a technology on the verge of widespread adoption. In some fields such as dental implants, the tooling or the aerospace industry, it is rapidly becoming state of the art for the production of highly complex and/or individualised parts. Research is currently focussing on ... [more]

MPIE-Colloquium: Phase Transformations: Atom-Probe Tomography versus Modeling

MPIE-Colloquium: Phase Transformations: Atom-Probe Tomography versus Modeling
The design of Atom probe tomography (APT) at Oxford and Rouen universities for 25 years ago has been an outstanding breakthrough in the microscopy world. APT is the only analytical microscope able to provide 3D images of a material at the atomic scale [1]. Because of its ultimate spatial resolution ... [more]

Driving Forces and Challenges of Interfacing Functional Oxide Perovskites

Driving Forces and Challenges of Interfacing Functional Oxide Perovskites
Perovskite (ABO3) oxides are by no exaggeration an extremely versatile class of materials, exhibiting a broad spectrum of fascinating physical properties: superconductivity, ferromagnetism, ferroelectricity, multiferroic behavior. Scaling down from bulk single crystals to thin and ultrathin (few ... [more]

MPIE-Colloquium: Atomic Resolution Observations of Step Structure and Dynamics in Grain Boundaries

MPIE-Colloquium: Atomic Resolution Observations of Step Structure and Dynamics in Grain Boundaries
The development of aberration correction for electron microscopy has greatly increased our ability to characterize materials at the atomic scale. The technological advances that have extended the resolution limit to 0.5Å have also made it possible to record images with better signal-to-noise and at ... [more]

MPIE-Colloquium: Structural Defects and Local Interfacial Chemistry of Complex Oxide Heterointerfaces

MPIE-Colloquium: Structural Defects and Local Interfacial Chemistry of Complex Oxide Heterointerfaces
Transition metal oxide superlattices have been widely investigated during recent years as they are one of the largest material groups where physical and chemical properties such as ferroelectricity, magnetism, ionic and electronic conductivity are closely coupled to structural parameters. Cation ... [more]

Role of orientation and grain interactions on the deformation of Ti64

Role of orientation and grain interactions on the deformation of Ti64
  • Date: May 23, 2016
  • Time: 13:30 - 14:00
  • Speaker: Prof Prita Pant
  • Department of Metallurgical Engineering and Materials Science, IIT-Bombay, Mumbai, India Speaker Bio: Prof Prita Pant graduated with a Ph.D from Cornell University in 2004 and is currently an Associate Professor at the Indian Institute of Technology Bombay. Her research interests focus on correlating deformation response of metals and alloys with microstructure. Her group has been using both bulk and micro-deformation techniques along with microscopy to investigate the evolution in microstructure with deformation and quantify the effect of dominant microstructural features on mechanical behavior. They also carry out both Molecular Dynamics (MD) and Dislocation Dynamics (DD) simulations to investigate deformation behavior.
  • Location: Max-Planck-Institut für Eisenforschung GmbH
  • Room: Room 1034 Hall 9
  • Host: Prof. Gerhard Dehm / Dr. Nagamani Jaya Balila
  • Contact: stein@mpie.de
Titanium and its alloys are extensively used for aerospace and biomedical applications due to their high specific strength – even at elevated temperature, and excellent corrosion resistance. Due to its hexagonal crystal structure, alpha titanium is highly anisotropic. Hence it is essential to ... [more]

Softening Non-Metallic Crystals by Inhomogeneous Elasticity

Softening Non-Metallic Crystals by Inhomogeneous Elasticity
Materials with more non-metallic bonding are brittle, but are widely used, for instance as protective coatings. These often fail by cracking, so if their fracture resistance were increased, by making plastic flow easier, their lifetime could be extended. Some non-metallic materials deform readily ... [more]

Re-thinking Rare Earth Magnets for Energy Applications: Demand, Sustainability and the Reality of Alternatives

Re-thinking Rare Earth Magnets for Energy Applications: Demand, Sustainability and the Reality of Alternatives
Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conversion and transportation 1. Permanent magnets are essential components in motors and generators of hybrid and electric cars, wind turbines, etc ... [more]
Schwerpunkt des diesjährigen Arbeitskreistreffens ist die Hochtemperatur Mikromechanik. Als externer Vortragender konnte Dr. David E.J. Armstrong von der Universität Oxford gewonnen werden. Dr. Armstrong gilt als einer der Pioniere auf dem Gebiet der ... [more]

Symposium ”In-situ Microscopy with Electrons, X-Rays and Scanning Probes in Materials Science“

Symposium ”In-situ Microscopy with Electrons, X-Rays and Scanning Probes in Materials Science“

Grain boundary, triple junction and quadruple point mobility controlled normal grain growth

Atomic-Scale Tomography: An Achievable Vision

This presentation will explore the concept of Atomic-scale tomography (AST), introduce available pathways for achieving AST and discuss how AST will facilitates integration with computational materials engineering. Dr. Thomas F. Kelly, then a professor at the University of Wisconsin – Madison, ... [more]

"Mechanics meets Energy IV” symposium at Akademie Biggesee

Strain-induced room temperature grain coarsening: side effect or major energy dissipation mechanism?

In this talk an overview of the room temperature grain coarsening effect in polymer-supported thin gold and copper films under cyclic mechanical loading will be presented. Detailed EBSD analysis, as the major characterization method, allows to capture extensive statistical data about the evolution ... [more]

Mathematical and physical simulation of a funnel thin slab continuous casting machine of a Mexican plant

The analysis of deformation and failure mechanisms in small-scale devices and thin films is a critical issue, not yet solved. In this presentation, we describe recent advances and developments for the measurement of fracture toughness at small scales by the use of nanoindentation-based methods ... [more]

Atomistic Studies on Dislocation – Interface Interactions:

Interfaces play a decisive role in the deformation of any polycrystalline metal or precipitate-strengthened alloy. Perhaps best known is the role of grain boundaries (GBs) as obstacle to dislocation motion as evidenced by the Hall-Petch strengthening. However, GBs can also serve as initiation sites ... [more]

Career Talk: BASF Coatings GmbH

Career Talk
Go to Editor View