Corrosion and dissolution in confinement
2. Realtime in-situ studies of electrochemically oxidizing/ reducing noble metal surfaces
Electrochemical solid|liquid interfaces are critically important for technological applications and materials for energy storage, harvesting, and conversion. Yet, a real-time Angstrom-resolved visualization of dynamic processes at electrified solid|liquid interfaces has not been feasible. Using white light interferometry in an SFA we developed a unique real-time atomistic view into dynamic processes at electrochemically active metal interfaces. This method allows simultaneous deciphering of both sides of an electrochemical interface—the solution and the metal side—with microsecond resolution under dynamically evolving reactive conditions that are inherent to technological systems in operando. Quantitative in situ analysis of the potentiodynamic electrochemical oxidation/reduction of noble metal surfaces shows that Angstrom thick oxides formed on Au and Pt are high-ikmaterials; that is, they are metallic or highly defect-rich semiconductors, while Pd forms a low-ik oxide. In contrast, under potentiostatic growth conditions, all noble metal oxides exhibit a low-ik behavior.



