Borchers, C.; Arlt, J.; Nowak, C.; Gärtner, F.; Hammerschmidt, M.; Kreye, H.; Volkert, C.; Kirchheim, R.: Influence of element distribution on mechanical properties in the bonding zone of explosively welded steels. Scripta Materialia 199, 113860 (2021)
Kresse, T.; Borchers, C.; Kirchheim, R.: Vacancy-carbon complexes in bcc iron: Correlation between carbon content, vacancy concentration and diffusion coefficient. Scripta Materialia 69 (9), pp. 690 - 693 (2013)
Li, Y.; Choi, P.-P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing. Ultramicroscopy 132, pp. 233 - 238 (2013)
Herbig, M.; Ponge, D.; Gault, B.; Borchers, C.; Raabe, D.: Segregation and phase transformation at dislocations during aging in a Fe-9%Mn steel studied by correlative TEM-atom probe tomography. MSE 2014, Darmstadt, Germany (2014)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…