Best, J. P.: Linking structure to fracture through small-scale mechanical analyses of a laser-processed bulk metallic glass. Materials Science Engineering MSE-2020 (Online), Darmstadt, Germany (2020)
Best, J. P.: Nano-/Micromechanics of Materials: A focus on laser-processed BMGs. Deutsches Zentrum für Luft- und Raumfahrt (DLR) Seminar Series, online, Köln, Germany (2020)
Best, J. P.: Small-scale mechanics at the Max-Planck-Institute in Düsseldorf: An overview. Oxford Materials Group Seminar Series, online, Oxford, UK (2020)
Kanjilal, A.; Best, J. P.; Dehm, G.: Investigation of Intermetallic-Mg interface strength using in-situ microshear testing. Nanomechanical Testing in Materials Research and Development IX, Sicily, Italy (2024)
Lee, J. S.; Dehm, G.; Best, J. P.; Stein, F.: Mechanical properties of B2 FeAl as a function of composition using targeted nanoindentation on diffusion couples. ECI Conference on Nanomechanical Testing in Materials Research and Development, Giardini Naxos, Messina (Sicily), Italy (2024)
Bhat, M. K.; Frommeyer, L.; Prithiv, T. S.; Dehm, G.; Best, J. P.: Using small-scale mechanics to probe the origins of segregation-induced strengthening. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. Intermetallics 2021, Educational Center Kloster Banz, Bad Staffelstein, Germany (2021)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Ghidelli, M.; Dehm, G.: On the mechanical properties and thermal stability of ZrxCu100-x thin film metallic glasses with different compositions. Nanobrücken 2021 - Nanomechanical Testing Conference virtual event, Düsseldorf, Germany (2021)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Ghidelli, M.; Dehm, G.: Effect of composition on mechanical properties and thermal stability of ZrCu thin film metallic glasses. European Materials Research Society (E-MRS) Spring Meeting 2021, Virtual Conference, Strasbourg, France (2021)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…