Dehm, G.: Resolving the mechanical performance of materials in microelectronic components with µm spatial resolution. FIMPART - Frontiers in Materials Processing Applications, Research and Technology, Bordeaux, France (2017)
Duarte, M. J.; Fang, X.; Brinckmann, S.; Dehm, G.: In-situ nanoindentation of hydrogen bcc Fe–Cr charged surfaces: Current status and future perspectives. Frontiters in Material Science & Engineering workshop: Hydrogen Interaction in Metals, Max-Planck Institut für Eisenforschung, Düsseldorf, Germany (2017)
Brinckmann, S.; Fink, C.; Dehm, G.: Severe Microscale Deformation of Pearlite and Cementite. 2017 MRS Spring Meeting & Exhibits, Phoenix, AZ, USA (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Fracture Toughness of Hexagonal and Cubic NbCo2 Laves Phases. Nanobrücken 2017, European Nanomechanical Testing Conference, University of Manchester, Manchester, UK (2017)
Dehm, G.: Resolving the interplay of nanostructure and mechanical properties in advanced materials. Karlsruher Werkstoffkolloquium im Wintersemester 2016/2017, Karlsruhe, Germany (2017)
Dehm, G.: Towards thermally stable nanocrystalline alloys with exceptional strength: Cu–Cr as a case study. 16th International Conference on Rapidly Quenched and Metastable Materials (RQ16), Leoben, Austria (2017)
Dehm, G.; Harzer, T. P.; Liebscher, C.; Raghavan, R.: High Temperature Plasticity of Cu–Cr Nanolayered and Chemically Nanostructured Cu–Cr Films. 2017 TMS Annual Meeting & Exhibition, San Diego, CA, USA (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Towards probing the barrier strength of grain boundaries for dislocation transmission. Electronic Materials and Applications 2017, Orlando, FL, USA (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Do we understand dislocation transmission through grain boundaries? PICS meeting, Luminy, Marseille, France (2017)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture Behavior of Nanostructured Heavily Cold Drawn Pearlite: Influence of the Interface. TMS 2017, San Diego, CA, USA (2017)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…