Gutiérrez-Urrutia, I.: Electron channelling contrast imaging under controlled diffraction conditions: A powerful technique for quantitative microstructural characterization of deformed materials. International Symposium on Plastic Deformation and Texture Analysis, Alcoy, Spain (2012)
Gutiérrez-Urrutia, I.; Marceau, R. K. W.; Raabe, D.: Multi-scale investigation of strain-hardening mechanisms in high-Mn steels from the mesoscale to the atomic scale. Lecture at Materials Department, Oxford University, Oxford, UK (2012)
Chen, Z.; Boehlert, C.; Gutiérrez-Urrutia, I.; Llorca, J.; Pérez-Prado, M. T.: In-situ analysis of the tensile deformation mechanisms in rolled AZ31. TMS 2012 Annual Meeting, Orlando, FL, USA (2012)
Gutiérrez-Urrutia, I.; Raabe, D.: Evaluation of twin boundary interfaces to strain hardening by electron channeling contrast imaging. TMS 2012 Annual Meeting, Orlando, FL, USA (2012)
Gutiérrez-Urrutia, I.: Electron channeling contrast imaging: A powerful technique for quantitative microstructural characterization of deformed materials in the SEM. Seminar at Bundesanstalt fuer Materialforschung-pruefung (BAM), Berlin, Germany (2012)
Gutiérrez-Urrutia, I.; Raabe, D.: New insights on quantitative microstructure characterization by electron channeling contrast imaging under controlled diffraction conditions in the SEM. Microscopy & Microanalysis, Phoenix, AZ, USA (2012)
Gutierrez-Urrutia, I.; Raabe, D.: Study of deformation twinning and planar slip in a TWIP steel by Electron Channelling Contrast Imaging in a SEM. International Conference on the Textures of Materials, ICOTOM 16, Bombay, India (2011)
Pérez-Prado, M. T.; Boehlert, C.; Llorca, J.; Gutiérrez-Urrutia, I.: In-situ analysis of deformation and recrystallization mechanisms. European Congress on Advanced Materials and Processes, EUROMAT 2011, Montpellier, France (2011)
Gutierrez-Urrutia, I.; Raabe, D.: Dislocation imaging by electron channeling contrast under controlled diffraction conditions in the SEM. Microscopy Conference MC 2011, Kiel, Germany (2011)
Gutierrez-Urrutia, I.; Dick, A.; Hickel, T.; Neugebauer, J.; Raabe, D.: Understanding TWIP steel microstructures by using advanced electron microscopy and ab initio predictions. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Gutierrez-Urrutia, I.; Raabe, D.: The influence of planar slip and deformation twinning on mechanical behavior in TWIP steels. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Raabe, D.; Gutierrez-Urrutia, I.: Effect of strain path and texture on microstructure in Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. 1st International Conference on High Manganese Steels 2011, Seoul, South Korea (2011)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Effect of grain size and heterogeneous strain distribution on deformation twinning in a Fe–22Mn–0.6C TWIP steel. THERMEC 2009, Berlin, Germany (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Quantitative electron channelling contrast imaging: A promising tool for the study of dislocation structures in SEM. Electron Backscatter Diffraction Meeting, Swansea, UK (2009)
Archie, F. M. F.: Nanostructured High-Mn Steels by High Pressure Torsion: Microstructure-Mechanical Property Relations. Master, Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Aachen, Germany (2014)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.