Neugebauer, J.: Materials design and discovery on the computer: Prospects and challenges. Kolloquium Universität Braunschweig , Braunschweig, Germany (2015)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Temperature-dependent coupling of atomic and magnetic degree of freedom from first-principles. Electronic Structure Theory for the Accelerated Design of Structural Materials, Moscow, Russia (2015)
Neugebauer, J.: Ab Initio Computation of Phonon-Phonon and Magnon-Phonon Interactions: Successes and Challenges. Workshop DyProSo, Freising, Germany (2015)
Neugebauer, J.: Design of structural materials by predictive ab initio thermodynamics: Challenges, applications and perspectives. Euromat Conference, Warsaw, Poland (2015)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Halide ions (Cl/Br/I) in water from ab-initio Molecular Dyna. Psi-k 2015 Conference, San Sebastián, Spain (2015)
Neugebauer, J.: Quantum-mechanical approaches to address the structural and thermodynamic complexity of engineering materials. Swedish Chemical Society, Kalmar, Sweden (2015)
Neugebauer, J.: Understanding the fundamental mechanisms behind H embrittlement: An ab initio guided multiscale approach. Colloquium UCB Vancouver, Vancouver, Canada (2015)
Neugebauer, J.: Vacancies in fcc metals: Discovery of large non-Arrhenius effects. The 5th Sino-German Symposium Thermodynamics and Kinetics of Nano and Mesoscale Materials and Their Applications, Changchun, China (2015)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
The development of pyiron started in 2011 in the CM department to foster the implementation, rapid prototyping and application of the highly advanced fully ab initio simulation techniques developed by the department. The pyiron platform bundles the different steps occurring in a typical simulation life cycle in a single software platform and…