Dutta, B.; Hickel, T.; Entel, P.; Neugebauer, J.: Ab Initio Predicted Impact of Pt on Phase Stabilities in Ni–Mn–Ga Heusler alloys. Journal of Phase Equilibra and Diffusion 35 (6), pp. 695 - 700 (2014)
Race, C.; von Pezold, J.; Neugebauer, J.: Role of the mesoscale in migration kinetics of flat grain boundaries. Physical Review B 89 (21), 214110 (2014)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Ab initio study of H-vacancy interactions in fcc metals: Implications for the formation of superabundant vacancies. Physical Review B 89 (14), 144108 (2014)
Hüter, C.; Nguyen, C.-D.; Spatschek, R. P.; Neugebauer, J.: Scale bridging between atomistic and mesoscale modelling: Applications of amplitude equation descriptions. Modelling and Simulation in Materials Science and Engineering 22 (3), 034001 (2014)
Todorova, M.; Neugebauer, J.: Extending the concept of defect chemistry from semiconductor physics to electrochemistry. Physical Review Applied 1 (1), 014001 (2014)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: An ab initio approach. Physical Review B 89 (8), 085307 (2014)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…