Filiatraut, A. N.; Mianroodi, J. R.; Hamidi Siboni, N.; Zanjani, M. B.: Predicting micro/nanoscale colloidal interactions through local neighborhood graph neural networks. Journal of Applied Physics 134 (23), 234702 (2023)
Khorrami, M. S.; Mianroodi, J. R.; Svendsen, B.: Finite-deformation phase-field microelasticity with application to dislocation core and reaction modeling in fcc crystals. Journal of the Mechanics and Physics of Solids 164, 104897 (2022)
Rezaei, S.; Mianroodi, J. R.; Brepols, T.; Reese, S.: Direction-dependent fracture in solids: Atomistically calibrated phase-field and cohesive zone model. Journal of the Mechanics and Physics of Solids 147, 104253 (2021)
Mianroodi, J. R.; Svendsen, B.: Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals. Materials 13 (10), 2238 (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.