Lill, K. A.; Fushimi, K.; Hassel, A. W.; Seo, M.: Investigations on the kinetics of single grains and grain boundaries by use of Scan-ning Electrochemical Microscopy (SECM). 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Mardare, A. I.; Lill, K. A.; Wieck, A.; Hassel, A. W.: 3D Scanning Setup for High Throughput Measurements. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Lill, K. A.; Stratmann, M.; Frommeyer, G.; Hassel, A. W.: Investigations on anisotropy of nickelfree alloys with combined local and trace analysis. GDCh Jahrestagung 2005, Fachgruppe Angewandte Elektrochemie, Düsseldorf, Germany (2005)
Lill, K. A.; Hassel, A. W.; Stratmann, M.: Korrosionsuntersuchungen auf einzelnen Körnern einer neuen Klasse ferritischer FeAlCr Leichtbaustähle. 79. AGEF Seminar - 25 Jahre Elektrochemie in Düsseldorf, Düsseldorf, Germany (2004)
Lill, K.; Hassel, A. W.: On the corrosion resistance of single grains of a new class of FeCrAl light weight ferritic steels. 5th International Symposium on Electrochemical Micro & Nanosystem Technologies, Tokyo, Japan (2004)
Lill, K.; Hassel, A. W.; Stratmann, M.: Electrochemical and corrosion investigations on LIP-steel and austenitic model steels of similar composition. GDCH Jahrestagung 2003, Fachgruppe Angewandte Elektrochemie mit 8. Grundlagensymposium der GDCh, DECHEMA, DBG, München, Germany (2003)
Lill, K. A.: Electrochemical Investigations on the Corrosion Properties of New Classes of Light Weight Steels. Dissertation, Ruhr-Universität-Bochum, Bochum, Germany (2008)
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.