Pradeep, K. G.: Atomic scale investigation of clustering and nanocrystallization in FeSiNbB(Cu) soft magnetic amorphous alloys. Dissertation, RWTH-Aachen, Aachen, Germany (2014)
Wu, X.: Structure-property-relations of cuticular photonic crystals evolved by different beetle groups (Insecta, Coleoptera). Dissertation, RWTH-Aachen, Aachen, Germany (2014)
Kords, C.: On the role of dislocation transport in the constitutive description of crystal plasticity. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Asgari, M.: Pulsed Plasma Nitriding - Effect on Hydrogen Embrittlement and Hydrogen Adsorption and Diffusion. Dissertation, Norwegian University of Science and Technology NTNU, Trondheim, Norway (2013)
Ayodele, S. G.: Lattice Boltzmann modeling of advection-diffusion-reaction equations in non-equilibrium transport processes. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Steinmetz, D.: A constitutive model of twin nucleation and deformation twinning in High-Manganese Austenitic TWIP steels. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Takahashi, T.: On the growth and mechanical properties of non-oxide perovskites and the spontaneous growth of soft metal nanowhiskers. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Hostert, C.: Towards designing elastic and magnetic properties of Co-based thin film metallic glasses. Dissertation, RWTH Aachen, Aachen, Germany (2012)
Britton, B.: Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction. Dissertation, Oxford University, Oxford, UK (2011)
Song, J.: Microstructure and properties of interfaces formed by explosion cladding of Titanium to low Carbon steel. Dissertation, Ruhr-University Bochum, Bochum, Germany (2011)
Voß, S.: Mechanische Eigenschaften von Laves-Phasen in Abhängigkeit von Kristallstruktur und Zusammensetzung am Beispiel der Systeme Fe–Nb–Al und Co–Nb. Dissertation, RWTH Aachen, Aachen, Germany (2011)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Advanced microscopy and spectroscopy offer unique opportunities to study the structure, composition, and bonding state of individual atoms from within complex, engineering materials. Such information can be collected at a spatial resolution of as small as 0.1 nm with the help of aberration correction.
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…