Davut, K.; Zaefferer, S.: Improving the Reliability of EBSD-based Texture Analysis by a New Large Area Mapping Technique. International Conference on the Textures of Materials, ICOTOM 16, Mumbai, India (2011)
Konijnenberg, P.; Zaefferer, S.; Lee, S.-B.; Rollett, A. D.; Rohrer, G.; Raabe, D.: Advanced Methods and Tools for Reconstruction and Analysis of Grain Boundaries from 3D-EBSD Data Sets. International Conference on the Textures of Materials, ICOTOM 16, Bombay, India (2011)
Zaefferer, S.: Comprehensive 5-parameter grain boundary description: How to measure it, how to display it and how important is it? ICOTOM 16, Mumbai, India (2011)
Konijnenberg, P.; Zaefferer, S.; Raabe, D.: Advanced Reconstruction and Analysis of Grain Boundaries from 3D-EBSD Data Sets. MRS Fall Meeting 2011, Boston, MA, USA (2011)
Konijnenberg, P.; Zaefferer, S.; Raabe, D.: Advanced Reconstruction and Analysis of Grain Boundaries from 3D-EBSD Data Sets. 3D Microstructure Meeting 2011, Saarbrücken, Germany (2011)
Davut, K.; Zaefferer, S.: Factors influencing the strain-induced transformation of residual austenite in a low-alloyed TRIP steel. Euromat 2011 Conference, Montpellier, France (2011)
Zaefferer, S.; Jäpel, T.; Tasan, C. C.; Konijnenberg, P.: Detailed observation of martensite transformation and twinning in TRIP and TWIP steels using advanced SEM diffraction techniques. ICOMAT 2011, Osaka, Japan (2011)
Zaefferer, S.: Electron diffraction-based techniques in the SEM: Do they give you everything you ever wanted to know about your sample? XIVth ICEM, Wisła, Poland (2011)
Elhami, N.-N.; Zaefferer, S.; Thomas, I.; Hofmann, H.: Observation of the crystallographic defect structure in lightly deformed TWIP steel by means of electron channeling contrast imaging (ECCI). 1st International Conference on High Manganese Steels (HMnS2011), Seoul, South Korea (2011)
Steinmetz, D.; Zaefferer, S.: Currents state of the art in EBSD: Possibilities and limitations. Seminar Talk at Ludwig-Maximilians-Universität, München, Germany (2011)
Tasan, C. C.; Zaefferer, S.; Raabe, D.: Deformation induced dislocation interactions near martensite-ferrite phase boundaries. MRS Fall Meeting 2011, San Francisco, CA, USA (2011)
Davut, K.; Zaefferer, S.: A new large-area mapping technique to improve the statistical reliability of EBSD datasets. Royal Microscopy Society (RMS) EBSD 2011 Meeting, Düsseldorf, Germany (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.