Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Quantitative electron channelling contrast imaging: A promising tool for the study of dislocation structures in SEM. Electron Backscatter Diffraction Meeting, Swansea, UK (2009)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Microstructure and texture evolution during high pressure torsion of a Cu0.17wt%Zr alloy. DPG Frühjahrstagung 2009, Dresden, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Multi-physical alloy approaches to solid solution strengthening of Al. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Ma, D.; Raabe, D.; Roters, F.; Maaß, R.; Van Swygenhoven, H.: Crystal Plasticity finite element method study on small scale plasticity. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Dmitrieva, O.; Dondl, P.; Müller, S.; Raabe, D.: Structural investigations of the orientation patterning in plastically deformed single crystals. TMS 2009 Annual Meeting, San Francisco, CA, USA (2009)
Fabritius, H.; Hild, S.; Nikolov, S.; Ziegler, A.; Raabe, D.; Friák, M.; Neugebauer, J.: Variations in the constructional morphology of crustacean skeletal elements at different hierarchical levels. Third International Conference on Mechanics of Biomaterials & Tissues ICMOBT 2009, Clearwater, FL, USA (2009)
Ma, D.; Friák, M.; Knezevic, M.; Kalidindi, S. R.; Lebensohn, R. A.; Roters, F.; Neugebauer, J.; Raabe, D.: Polycrystal coarse graining of elastic properties for Ti-Nb biomedical grades using ab-initio single crystal elastic constants. International Plasticity Conference 2009, Virgin Islands, USA (2009)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.; Petrov, M.; Friák, M.; Neugebauer, J.: Modeling of the mechanical properties of lobster cuticle from ab initio to macroscale: How nature designs multifunctional composites with optimal properties. International Plasticity Conference 2009, Virgin Islands, USA (2009)
Ohsaki, S.; Raabe, D.; Hono, K.: Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by TEM and atom probe tomography. MRS 2009 Fall Meeting, Boston, MA, USA (2009)
Raabe, D.; Demir, E.; Zaefferer, S.: Experimental investigation of geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. MRS 2009 Fall Meeting, Boston, MA, USA (2009)
Hild, S.; Ziegler, A.; Neues, F.; Epple, M.; Fabritius, H.; Raabe, D.: The Crustacean Cuticle: A Model to Study the Influence of Chemical Composition and Microstructure on the Mechanical Properties of a Biological Composite Material. MRS Fall Conference 2008, Boston, MA, USA (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.