Ponge, D.; Tarzimoghadam, Z.; Klöwer, J.; Raabe, D.: Hydrogen-assisted Failure in Ni-base Superalloy 718 Studied under In-situ Hydrogen Charging: The Role of Localized Deformation in Crack Propagation. TMS 2017 Annual Meeting & Exhibition, San Diego, CA, USA (2017)
Springer, H.; Raabe, D.; Belde, M. M.: Rapid Alloy Prototyping – High Throughput Bulk Metallurgy at the MPIE. Workshop on machine learning and data analytics in advanced metals processing, RollsRoyce Institute Manchester, Manchester, UK (2017)
Diehl, M.; Cereceda, D.; Wong, S. L.; Reuber, J. C.; Roters, F.; Raabe, D.: From Phenomenological Descriptions to Physics-based Constitutive Models EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials. EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials
, Aberdeen, Scotland (2016)
Ponge, D.; Kuzmina, M.; Herbig, M.; Sandlöbes, S.; Raabe, D.: Segregation and Austenite Reversion at Dislocations in a Binary Fe–9%Mn Steel Studied by Correlative TEM-atom Probe Tomography. The 3rd International Conference on High Manganese Steels, Chengdu, China (2016)
Marian, J.; Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.: Unraveling the temperature dependence of the yield strength of tungsten single crystals using atomistically-informed crystal plasticity. 8th International Conference on Multiscale Materials Modeling, MMM2016, Dijon, France (2016)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Marian, J.: Unraveling the temperature dependence of the yield strength in BCC metals from atomistically-informed crystal plasticity calculation. Dislocations 2016, Purdue University, West Lafayette, IN, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.