Roters, F.; Wong, S. L.; Shanthraj, P.; Diehl, M.; Raabe, D.: Thermo mechanically coupled simulation of high manganese TRIP/TWIP Steel. 5th International Conference on Material Modeling, ICMM 5, Rome, Italy (2017)
Raabe, D.; Gault, B.; Yao, M.; Scheu, C.; Liebscher, C.; Herbig, M.: Correlated and simulated electron microscopy and atom probe tomography. Workshop on Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2017, Bernkastel, Germany (2017)
Ponge, D.; Tarzimoghadam, Z.; Klöwer, J.; Raabe, D.: Hydrogen-assisted Failure in Ni-base Superalloy 718 Studied under In-situ Hydrogen Charging: The Role of Localized Deformation in Crack Propagation. TMS 2017 Annual Meeting & Exhibition, San Diego, CA, USA (2017)
Springer, H.; Raabe, D.; Belde, M. M.: Rapid Alloy Prototyping – High Throughput Bulk Metallurgy at the MPIE. Workshop on machine learning and data analytics in advanced metals processing, RollsRoyce Institute Manchester, Manchester, UK (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…