Brink, T.; Langenohl, L.; Ahmad, S.; Liebscher, C.; Dehm, G.: Atomistic Modeling of the Thermodynamics of Grain Boundaries in fcc Metals. 19th International Conference on Diffusion in Solids and Liquids, Crete, Greece (2023)
Brink, T.; Frommeyer, L.; Freitas, R.; Frolov, T.; Pemma, S.; Liebscher, C.; Dehm, G.: Diffusionless congruent grain boundary phase transitions in metals: Simulation and experimental imaging. 2021 Fall Meeting of the European Materials Research
Society
, Virtual (2021)
Frommeyer, L.; Brink, T.; Freitas, R.; Frolov, T.; Dehm, G.; Liebscher, C.: Congruent grain boundary phase transformations revealed by STEM in pure copper. Microscopy conference Joint Meeting of Dreiländertagungn & Multinational Congress on Microscopy MC 2021, virtual, Vienna, Austria (2021)
Liebscher, C.: How do grain boundaries transform in metallic alloys? Institute of Material Physics, Westfälische Wilhelms-Universität Münster, Online Colloqium, Münster, Germany (2021)
Liebscher, C.; Lu, W.; Dehm, G.; Raabe, D.; Li, Z.: Complex phase transformation pathways in high entropy alloys explored by in situ S/TEM. Third International Conference on High Entropy Materials, Berlin, Germany (2020)
Ahmad, S.; Liebscher, C.; Dehm, G.: To decipher the novel atomic structure of [111] tilt grain boundaries in Al. Material Science and Engineering Congress - MSE 2020, virtual, Darmstadt, Germany (2020)
Devulapalli, V.; Dehm, G.; Liebscher, C.: Unravelling grain boundary structures in Ti thin films using aberration-corrected transmission electron microscopy. MSE Darmdtadt (Virtual), Darmstadt, Germany (2020)
Saood, S.; Liebscher, C.; Dehm, G.: Observing the atomic structure of high angle [111] tilt grain boundaries in Al. Materials Science and Engineering Congress MSE 2020, virtual (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.