Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Ab initio based prediction of phase diagrams: Application to magnetic shape-memory alloys. 9. Materialwissenschaftlicher Tag der Ruhr-Universtät Bochum, Bochum, Germany (2011)
Neugebauer, J.: Fully ab initio determination of free energies: Methodological challenges and applications. Conference on Computational Physics (CCP2011), Gatlinburg, TN, USA (2011)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: The dangling-bond defect in amorphous silicon: Insights from theoretical calculations of the EPR parameters. Workshop on Advanced EPR for material and solar energy research, Berlin, Germany (2011)
Izanlou, A.; Todorova, M.; Friák, M.; Palm, M.; Neugebauer, J.: Theoretical study of the environmental effect of H-containing gases on Fe–Al surfaces. FeAl2011, Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Lanzarote, Canary Islands, Spain (2011)
Neugebauer, J.: Doping and growth issues in group-III nitrides: An ab initio perspective. Workshop on III-Nitrides Growth, Characterization and Simulation, Berlin, Germany (2011)
Neugebauer, J.: Ab initio guided materials characterization and design. Science Vision for the European Spallation Source, Bad Reichenhall, Germany (2011)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Enhancing mechanical properties of calcite by Mg substitutions - A Quantum-Mechanical Study. 12th International Symposium on Physics of Materials, Prague, Czech Republic (2011)
Neugebauer, J.: Ab initio based modeling of structural materials with superior properties: From a predictive thermodynamic description to tailored mechanical properties. EUROMAT 2011, Montpellier, France (2011)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: The Dangling-Bond Defect in Amorphous Silicon: Statistical Random Versus Kinetically Driven Defect Geometries. 24th International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS 24), Nara, Japan (2011)
Gutierrez-Urrutia, I.; Dick, A.; Hickel, T.; Neugebauer, J.; Raabe, D.: Understanding TWIP steel microstructures by using advanced electron microscopy and ab initio predictions. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Chemical Trends for Phase Transitions in Magnetic Shape Memory Alloys Derived from First Principles. International Conference on Ferromagnetic Shape-Memory Alloys, ICFSMA’11, Dresden, Germany (2011)
Nazarov, R.; Hickel, T.; Neugebauer, J.: H solubility in different steel phases: Influence of alloying elements and strain. HYDRAMICROS Workshop, Otaniemi, Finland (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.