Siboni, N. H.; Raabe, D.; Varnik, F.: Maintaining the equipartition theorem in small heterogeneous molecular dynamics ensembles. Physical Review E 87 (3), pp. 030101-1 - 030101-4 (2013)
Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite. Acta Materialia 61 (5), pp. 1773 - 1784 (2013)
Seol, J.-B.; Raabe, D.; Choi, P.; Park, H. S.; Kwak, J. H.; Park, C. G.: Direct evidence for the formation of ordered carbides in a ferrite based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scripta Materialia 68 (6), pp. 348 - 353 (2013)
Titrian, H.; Aydin, U.; Friák, M.; Ma, D.; Raabe, D.; Neugebauer, J.: Self-consistent scale-bridging approach to compute the elasticity of multi-phase polycrystalline materials. Materials Research Society Symposia Proceedings 1524, pp. 17 - 23 (2013)
Gutiérrez-Urrutia, I.; Raabe, D.: Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scripta Materialia 68 (6), pp. 343 - 347 (2013)
Pinto de Siqueira, R.; Sandim, H. R. Z.; Raabe, D.: Particle Stimulated Nucleation in Coarse-Grained Ferritic Stainless Steel. Metallurgical and Materials Transactions A 44 (1), pp. 469 - 478 (2013)
Woldemedhin, M. T.; Raabe, D.; Hassel, A. W.: Characterization of thin anodic oxides of Ti–Nb alloys by electrochemical impedance spectroscopy. Electrochimica Acta 82, pp. 324 - 332 (2012)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Exploring the p-n junction region in Cu(In,Ga)Se2 thin-film solar cells at the nanometer-scale. Applied Physics Letters 101 (18), pp. 181603-1 - 181603-5 (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.