Bastos, A.; Zaefferer, S.; Raabe, D.: 3D Orientation microscopy. Deutsche Gesellschaft für Materialkunde e.V. Fachausschuss Texturen, RWTH Aachen, Germany (2007)
Zaefferer, S.: 3D orientation microscopy in a FIB-SEM: A new dimension of microstructure characterisation. Res Metallica Chair 2007, KU Leuven, Belgium (2007)
Zaefferer, S.: 3D orientation microscopy in a FIB-SEM: A new dimension of microstructure characterisation. Presentation at the scientific advisory board MPI Eisenforschung, MPI Eisenforschung GmbH, Düsseldorf, Germany (2007)
Bastos, A.; Zaefferer, S.; Raabe, D.: 3D EBSD Characterization of a Nanocrystalline NiCo Alloy by use of a High-resolution Field Emission SEM-EBSD Coupled with Serial Sectioning in a Focused Ion Beam Microscope (FIB). MRS Fall Conference, Boston, MA, USA (2006)
Kobayashi, S.; Zaefferer, S.: Determination of Phase Equilibria in the Fe3Al–Cr–Mo–C Semi-quaternary System Using a New Diffusion-multiple Technique. 12th International IUPAC Conference on High Temperature Materials Chemistry, Vienna, Austria (2006)
Zaefferer, S.; Sato, H.: Investigation of the formation mechanism of martensite plates in Fe-30%Ni by a high resolution orientation microscopy in SEM. ESOMAT 2006, Bochum (2006)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation of Particle-containing Fe3Al Alloys. Fundamentals of Deformation and Annealing Symposium, Manchester, UK (2006)
Zaefferer, S.: High resolution orientation microscopy in 2 and 3 dimensions to study microstructure formation processes. 2. Warmumformtag (2.WUT), Düsseldorf (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.; Zambaldi, C.: 3D EBSD characterization and crystal plasticity FE simulation of the texture and microstructure below a nanoindent in Cu. Plasticity Conference 2006, Halifax, Canada (2006)
Kobayashi, S.; Zaefferer, S.: Microstructure Control Using Phase Transformations in Ternary Gamma TiAl Alloys. Seminar talk, Universität Kassel, Kassel Germany (2006)
Zaefferer, S.: 3D-orientation microscopy in a FIB-SEM: A new dimension of microstructure characterization. 13th Conference on Electron Backscatter Diffraction, Oxford, UK (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: Orientation microscopy on electrodeposited samples. 13th Conference and Workshop on Electron Backscatter Diffraction, Oxford, UK (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of microstructure and Texture of nanostructure electrodeposited NiCo samples by use of Electron Backscatter Diffraction (EBSD). DPG – Spring meeting, Dresden, Germany (2006)
Kobayashi, S.; Zaefferer, S.: Optimisation of Precipitation for the Development of Heat Resistant Fe3Al-based Alloys. Seminar talk, National Institute for Materials Science (NIMS), Tsukuba, Japan (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.