Koprek, A.; Cojocaru-Mirédin, O.; Würz, R.; Freysoldt, C.; Gault, B.; Raabe, D.: Cd and Impurity Redistribution at the CdS/CIGS Interface After Annealing of CIGS-Based Solar Cells Resolved by Atom Probe Tomography. IEEE Journal of Photovoltaics 7 (1), 7762819, pp. 313 - 321 (2017)
Stoffers, A.; Cojocaru-Mirédin, O.; Seifert, W.; Zaefferer, S.; Riepe, S.; Raabe, D.: Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Progress in Photovoltaics: Research and Applications 23 (12), pp. 1742 - 1753 (2015)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Exploring the p-n junction region in Cu(In,Ga)Se2 thin-film solar cells at the nanometer-scale. Applied Physics Letters 101 (18), pp. 181603-1 - 181603-5 (2012)
Choi, P.; Cojocaru-Mirédin, O.; Wuerz, R.: Compositional gradients and impurity distributions in CuInSe2 thin-film solar cells studied by atom probe tomography. Surface and Interface Analysis 44 (11-12), pp. 1386 - 1388 (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…