Uijttewaal, M.; Hickel, T.; Grabowski, B.; Neugebauer, J.: First ab initio determination of the phase transformation of Ni_{2}MnGa: The pre-martensitic transition. e-MRS 2007 Fall Meeting, Warsaw, Poland (2007)
Grabowski, B.; Hickel, T.; Neugebauer, J.: From ab initio to materials properties: Accuracy and error bars of DFT thermodynamics. Euromat 2007, European Congress on Advanced Materials and Processes, Nürnberg, Germany (2007)
Hickel, T.; Grabowski, B.; Uijttewaal, M.; Neugebauer, J.: Ab initio prediction of structural and thermodynamic properties of magnetic shape memory alloys. Euromat 2007, European Congress on Advanced Materials and Processes, Nürnberg, Germany (2007)
Hickel, T.; Grabowski, B.; Uijttewaal, M.; Neugebauer, J.: Determination of symmetry-reduced structures by a soft-phonon analysis in magnetic shape memory alloys. Physics Seminar of Loughborough University, Loughborough, UK (2007)
Hickel, T.; Grabowski, B.; Neugebauer, J.; Marquardt, O.: Department of Computational Materials Design: Present activities and future research. Guided tour in the MPIE of IMPRS-SurMat, Duesseldorf, Germany (2007)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio calculation of free energies and thermodynamic properties of fcc metals. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Marquardt, O.; Hickel, T.; Grabowski, B.; Boeck, S.; Neugebauer, J.: Implementation and application of the k.p-formalism to electronic structure and Coulomb matrix elements. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Hickel, T.; Grabowski, B.; Uijttewaal, M.; Neugebauer, J.: Ab initio determination of symmetry-reduced structures by a soft-phonon analysis in Ni_{2}MnGa. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Hickel, T.; Grabowski, B.; Uijttewaal, M.; Neugebauer, J.: Ab initio prediction of structural and thermodynamic properties of magnetic shape memory alloys. Focus meeting of the SPP 1239: Fundamentals of the Magnetic Shape Memory Effect: Materials properties & simulations, Schloss Ringberg, Germany (2007)
Hickel, T.; Grabowski, B.; Neugebauer, J.: Ab initio prediction of structural and thermodynamic properties of metals. Seminar Abt. Jansen, MPI für Festkörperforschung, Stuttgart, Germany (2007)
Grabowski, B.; Hickel, T.; Neugebauer, J.: From ab initio to materials properties: Accuracy and error bars of DFT thermodynamics. MMM Workshop, Barcelona, Spain (2007)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: Ab initio prediction of structural and thermodynamic properties of metals. International Max-Planck Workshop on Multiscale Materials Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Grabowski, B.: PAW calculations of thermodynamic properties of metals: xc-related error bars and chemical trends. 1. Harzer Ab initio Workshop, Clausthal-Zellerfeld, Germany (2006)
Grabowski, B.: Quantum mechanics meets steel: Was uns moderne Simulationsprogramme über Stahl und Eisen verraten. Schülertag, MPIE, Düsseldorf, Germany (2006)
Hickel, T.; Grabowski, B.; Neugebauer, J.: Temperature dependent properites of Ni2MnGa – An ab initio approach -. European Symposium on Martensitic Transformations (ESOMAT), Bochum (2006)
Hickel, T.; Grabowski, B.; Neugebauer, J.: Ferromagnetic shape memory alloys: Thermodynamic and magnetic properites. Joint group meeting at Material Research Laboratory of University of California, Santa Barbara, Santa Barbara, USA (2006)
Hickel, T.; Grabowski, B.; Neugebauer, J.: Temperature and magnetic field dependent properites of Ni2MnGa. Kolloquium zur Festkörpertheorie, Institut für Physik der Humboldt-Universtität zu Berlin, Berlin, Germany (2006)
Grabowski, B.: Ab initio calculation of thermodynamic properties of metals: xc-related error bars and chemical trends. DPG-Jahrestagung, Dresden, Germany (2006)
Hickel, T.; Grabowski, B.; Neugebauer, J.: Temperature and magnetic field dependent properites of Ni2MnGa. DPG Spring Meeting of the Division Condensed Matter, Dresden, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…