Cojocaru-Mirédin, O.; Choi, P.; Schwarz, T.; Würz, R.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in CIGS thin-films solar cells. DPG-Frühjahrstagung Modern, Atom Probe Tomography, TU Berlin, Germany (2012)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in thin-film solar cells. Seminar Talk at Helmholtz Zentrum Berlin (HZB), Berlin, Germany (2012)
Li, Y. J.; Choi, P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. 53rd International Field Emission Symposium (IFES), Tascaloosa, AL, USA (2012)
Choi, P.: Characterization of advanced functional and structural materials using Atom Probe Tomography. Inauguration symposium for the Atom Probe facilities ETH Zürich, Zürich, Switzerland (2011)
Cojocaru-Mirédin, O.; Choi, P.; Würz, R.; Abou-Ras, D.; Raabe, D.: Explorer les interfaces à l’échelle atomique dans les cellules photovoltaïques CIGSe. Commissariat à l’Energie Atomique et aux Energies Alternatives, Grenoble, France (2011)
Herbig, M.; Li, Y.; Choi, P.: Atomic Analysis of Concentration Changes at Interfaces by Atom Probe Tomography. SFB 761 Doktorandenseminar, RWTH Aachen, Germany (2011)
Cojocaru-Mirédin, O.; Choi, P.; Abou-Ras, D.; Wuerz, R.; Liu, T.; Schmidt, S. S.; Caballero, R.; Raabe, D.: Characterization of internal interfaces in Cu(In,Ga)Se2 thin-film solar cells using Atom Probe Tomography. Euromat 2011, Montpellier, France (2011)
Choi, P.: Study of local chemical gradients in advanced precipitation hardened steel using atom probe tomography. THERMEC 2011, Québec City, QC, Canada (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.