Marquardt, O.; Hickel, T.; Neugebauer, J.; Gambaryan, K. M.; Aroutiounian, V. M.: Growth process, characterization, and modeling of electronic properties of coupled InAsSbP nanostructures. Journal of Applied Physics 110 (4), pp. 043708-1 - 043708-6 (2011)
Young, T. D.; Marquardt, O.: Influence of strain and polarization on electronic properties of a GaN/AlN quantum dot. Physica Status Solidi C C6 (S2), pp. S557 - S560 (2009)
Marquardt, O.; Gambaryan, K. M.; Aroutiounian, V. M.; Hickel, T.; Neugebauer, J.: Growth process, characterization and optoelectronic properties of InAsSbP dot-pit cooperative nanostructures. VCIAN 2010, Santorini, Greece (2010)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Polarization-induced charge carrier separation in realistic polar and nonpolar GaN quantum dots. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Polarization-induced charge carrier separation in realistic polar and nonpolar grown GaN quantum dots. Collaborative Conference on Interacting Nanostructures CCIN'09, San Diego, CA, USA (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Application of an eight-band k.p model to study III-nitride semiconductor. DPG Spring Meeting 2009, Dresden, Germany (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Investigation of group III-nitride semiconductor nanostructures using an eight-band k.p formalism. APS March meeting, Pittsburgh, PA, USA (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Modeling of electronic and optical properties of GaN/AlN quantum dots by using the k.p-method. Bremen DFG Forschergruppe: Workshop in Riezlern, Riezlern, Austria (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Effect of strain and polarization on the electronic properties of 2-, 1- and 0-dimensional semiconductor nanostructures. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.