Jägle, E.: Parameter finding for and accuracy of the Maximum Separation algorithm assessed by Atom Probe simulations. 2nd European APT Workshop at ETH Zürich, Zürich, Switzerland (2013)
Jägle, E.: Atom Probe Tomography: Basics, data analysis and application to the analysis of advanced steels. Symposium "Frontiers in Steelmaking and Steel Design", INM, Saarbrücken, Germany (2013)
Jägle, E.: Atom Probe Tomography: Basics, data analysis and application to the analysis of phase transformations. Kolloquium at Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany (2013)
Hariharan, A.; Lu, L.; Risse, J.; Jägle, E. A.; Raabe, D.: Mechanisms Contributing to Solidification Cracking during laser powder bed fusion of Inconel-738LC. Alloys for Additive Manufacturing Symposium 2019 (AAMS2019), Chalmers University of Technology, Gothenburg, Sweden (2019)
Bajaj, P.; Gupta, A.; Jägle, E. A.; Raabe, D.: Precipitation kinetics during non-linear heat treatment in Laser Additive Manufacturing. International Conference on Advanced Materials and Processes, ‘ADMAT 2017’ SkyMat, Thiruvananthapuram, India (2017)
Jägle, E. A.: Microstructural Aspects of Additive Manufacturing. Lecture: Workshop “Microstructural Aspects of Additive Manufacturing”, Indian Institute of Technology Roorkee, 3,5h of lectures, Roorkee, India, December 02, 2017
Ackers, M.: Recommissioning of a metal powder atomisation system and investigation of its suitability to produce powders for additive Manufacturing processes. Master, Ruhr-Universität Bochum, Bochum, Germany (2017)
Qin, Y.: Effect of post-heat treatment on the microstructure and mechanical properties of SLM-produced IN738LC. Master, RWTH Aachen, Aachen, Germany (2017)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…