Stratmann, M.; Kim, K. T.; Streckel, H.: Neue experimentelle Verfahren zur Untersuchung der atmosphärischen Korrosion von mit dünnen Elektrolytfilmen belegten Metallen. Zeitschrift für Metallkunde 81, 10, pp. 715 - 725 (1990)
Stratmann, M.; Streckel, H.: On the Atmospheric Corrosion of Metals, which are covered with Thin Electrolyte Layers. Part 1: Verification of the Experimental Technique. Corrosion Science 30 (6-7), pp. 681 - 696 (1990)
Stratmann, M.; Streckel, H.: On the Atmospheric Corrosion of Metals, which are covered with Thin Electrolyte Layers. Part 2: Experimental Results. Corrosion Science 30 (6-7), pp. 697 - 714 (1990)
Stratmann, M.; Streckel, H.; Kim, K.-t.; Crockett, S.: On the atmospheric corrosion of metals, which are covered with thin electrolyte layers. Part 3: The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corrosion Science 30 (6-7), pp. 715 - 734 (1990)
Volmer, M.; Stratmann, M.; Viefhaus, H.: Electrochemical and Electron Spectroscopic Investigations of Iron Surfaces Modified with Thiols. Surface and Interface Analysis 16, 1-12, pp. 278 - 282 (1990)
Wolpers, M.; Viefhaus, H.; Stratmann, M.: SEM and SAM Imaging of Silane LB-Films on Metallic Substrates. Applied Surface Science 45, 2, pp. 167 - 170 (1990)
Stratmann, M.; Hoffmann, K.: In-Situ Mößbauer Spectroscopic Study of Reactions within Rust Layers. Corrosion Science 29 (11-12), pp. 1329 - 1352 (1989)
Stratmann, M.; Hoffmann, K.: In situ Möβbauer spectroscopic study of reactions within rust layers. Corrosion Science 29 (11-12), pp. 1329 - 1352 (1989)
Volmer, M.; Stratmann, M.; Viefhaus, H.: Interaction between S-organic compounds and iron surfaces. Fresenius’ Zeitschrift für Analytische Chemie 333 (4-5), p. 545 (1989)
Stratmann, M.; Streckel, H.: The Investigation of the Corrosion of Metal Surfaces, Covered with Thin Electrolyte Layers - A New Experimental Technique. Berichte Bunsengesellschaft Physikalische Chemie 92 (11), pp. 1244 - 1250 (1988)
Volmer, M.; Czodrowski, B.; Stratmann, M.: Electron Spectroscopic and Electrochemical Investigations of Chemically Modified Iron Surfaces. Berichte Bunsengesellschaft Physikalische Chemie 92 (11), pp. 1335 - 1341 (1988)
Stratmann, M.: The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers-A new experimental technique. Corrosion Science 27 (8), pp. 869 - 872 (1987)
Stratmann, M.; Bohnenkamp, K.; Engell, H.-J.: Investigations Toward Understanding of the Atmospheric Corrosion Processes of Pure Iron. Materials and Corrosion - Werkstoffe und Korrosion 34 (12), pp. 604 - 612 (1983)
Stratmann, M.; Engell, H.-J.: An Electrochemical and Magnetic Study of Phase-Transitions in Rust-Layers during the Atmospheric Corrosion of Iron. Journal of the Electrochemical Society 130 (8), p. C313 (1983)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…