Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Pei, Z.; Neugebauer, J.; Raabe, D.: Combining ab initio calculations and high-resolution experiments to understand advanced Mg alloys. German-Korean workshop on the “Production and industrial applications of semi-finished Mg products”, Irsee, Germany (2011)
Davut, K.; Zaefferer, S.: The effect of texture on the stability of retained austenite in Al-alloyed TRIP steels of Al-alloyed TRIP Steels. MRS 2010 Fall Meeting, Boston, MA, USA (2010)
Davut, K.; Zaefferer, S.: Statistical Reliability of EBSD Data Sets for the Characterization of Al-alloyed TRIP Steels. 15th International Metallurgy and Materials Congress, Istanbul, Turkey (2010)
Sandlöbes, S.; Zaefferer, S.: Effect of RE elements on the deformation and recrystallization behaviour of Magnesium. MagNET Workshop 5, Vancouver, Canada (2010)
Zaefferer, S.: Diffraction techniques in the scanning electron microscope: Making SEM a universal tool for microstructure research. Salzgitter-Mannesmann Summerschool, Duisburg, Germany (2010)
Khorashadizadeh, A.; Winning, M.; Zaefferer, S.; Raabe, D.: Recrystallization and grain growth in ultra fine grained CuZr alloy processed by high pressure torsion. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Surface Topographies after Nanoindentation and their Utilization to Quantify the Plastic Anisotropy of Gamma-TiAl on the Single Crystal Length Scale. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Zaefferer, S.; Wu, G.: A critical review of orientation microscopy techniques in SEM and TEM. Facets of Electron Crystallography, Berlin, Germany (2010)
Winning, M.; Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.: Recrystallization and grain growth in ultra fine grained materials produced by high pressure torsion. Recrystallization & Grain Growth 4 RX&GG, Sheffield, UK (2010)
Zaefferer, S.: 3D orientation microscopy based on FIB-EBSD tomography: Potentials and limits. Advanced Methods in Electron Backscatter Diffraction, St. Etienne, France (2010)
Davut, K.; Zaefferer, S.: Statistical Reliability of Phase Fraction and Texture Determination Based on EBSD Investigations on the Example of an Al-TRIP steel. Royal Microscopy Society (RMS) EBSD 2010 Meeting, Derby, UK (2010)
Steinmetz, D.; Zaefferer, S.: Improving the physical resolution of electron backscatter diffraction by decreasing accelerating voltage. EBSD 2010 Meeting, Rolls-Royce Leisure Association, Derby, UK (2010)
Steinmetz, D.; Zaefferer, S.: Quantitative determination of twin volume fraction in TWIP steels by high resolution EBSD. Materials Science and Technology (MS&T) 2010, Pittsburgh, PA, USA (2009)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…