Ponge, D.; Song, R.; Ardehali Barani, A.; Raabe, D.: Thermomechanical Processing Research at the Max Planck Institute for Iron Research. FORTY FIRST SEMIANNUAL TECHNICAL PROGRAM REVIEW, Golden, CO, Colorado School of Mines, Advanced Steel Processing and Products Research Center (2005)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive law for BCC materials in crystal plasticity FEM. 15th International Workshop on Computational Mechanics of Materials, MPI für Eisenforschung, Düsseldorf (2005)
Raabe, D.; Godara, A.: Published in conference proceedings: Strain localization and microstructure evolution during plastic deformation of fiber reinforced polymer composites. International Workshop on Thermoplastic Matrix Composites (THEPLAC 2005), Lecce, Italy (2005)
Varnik, F.; Raabe, D.: Lattice Boltzmann studies of flow instability in microchannels: The role of the surface roughness/topology. Laboratoire de Physique et de la Matiere Condensee et Nanostructure, Universite Claude Bernard, Lyon1, France (2005)
Dorner, D.; Lahn, L.; Zaefferer, S.; Raabe, D.: Fundamental Research on Microstructure and Microtexture Development in Grain-oriented Silicon Steel: The Evolution of the Goss orientation. 17th Soft Magnetic Materials Conference (SMM17), Bratislava, Slovakia (2005)
Zaefferer, S.; Konrad, J.; Raabe, D.: 3D-Orientation Microscopy in a Combined Focused Ion Beam (FIB) - Scanning Electron Microscope: A New Dimension of Microstructure Characterisation. Microscopy Conference 2005, Davos, Switzerland (2005)
Bastos da Silva, A. F.; Raabe, D.; Zaefferer, S.: Experiments on the local mechanics and texture evolution of nanocrystalline Nickel. 14th International Conference on Textures of Materials (ICOTOM 14), Leuven, Belgium (2005)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM. 14th International Conference on Textures of Materials (ICOTOM 14), Leuven, Belgium (2005)
Roters, F.; Jeon-Haurand, H. S.; Tikhovskiy, I.; Raabe, D.: A Texture Evolution Study Using the Texture Component Crystal Plasticity FEM. 14th International Conference on Textures of Materials (ICOTOM 14), Leuven, Belgium (2005)
Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of Nanostructured Electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). Conference on Textures of Materials ICOTOM 14, Leuven, Belgium (2005)
Raabe, D.: Microstructure and texture of the bio-composite material of the exoskeleton of homarus americanus (lobster). Fakultäts-Kolloquium der Fakultät für Geowissenschaften der Universität Göttingen, Göttingen, Germany (2005)
Ma, A.; Roters, F.; Raabe, D.: Introducing the Effect of Grain Boundaries into Crystal Plasticity FEM Using a Non Local Dislocation Density Based Constitutive Model. Theory and Application to FCC Bi-Crystals. Euromech Colloquium 463: Size dependent mechanics of materials, Groningen, Niederlande (2005)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.