Reithmeier, M.: Antireflecting Interlayers for Enhancing Transparency of Metal Layers for Internal Reflection Infrared Spectroscopy. Dissertation, Fakultät für Chemie und Biochemie der Ruhr-Universität, Bochum, Germany (2011)
Özcan, Ö.: Synthesis, Characterisation and Functionalisation of ZnO Nanorods on Metals. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2010)
Hamou, F. R.: Numerical Investigation of Scanning Electrochemical Potential Microscopy (SECPM). Dissertation, Fakultät für Physik und Astronomie der Ruhr-Universität, Bochum, Germany (2010)
Abu-Farsakh, H.: Understanding the interplay between thermodynamics and surface kinetics in the growth of dilute nitride alloys from first principles. Dissertation, University of Paderborn, Paderborn, Germany (2010)
Santa, M.: Combined in-situ spectroscopic and electrochemical studies of interfacial and interphasial reactions during adsorption and de-adhesion of polymer films on metals. Dissertation, Universität Paderborn, Paderborn, Germany (2010)
Itani, H.: Analytical Studies of Structure and Stability of Silver Nanoparticles in Layer-by-Layer Deposited Polyelectrolyte Films. Dissertation, Ruhr Universität Bochum, Bochum, Germany (2010)
Demir, E.: Constitutive modeling of fcc single crystals and experimental study of mechanical size effects. Dissertation, RWTH Aachen, Aachen, Germany (2010)
Ifeacho, V.: Application of the Chemical Force Microscopy for Analysis of the Molecular Adhesion on α-Al2O3(0001) Interfaces in Aqueous Electrolytes. Dissertation, Universität Paderborn, Paderborn, Germany (2010)
Marquardt, O.: Implementation and application of continuum elasticity theory and a k.p-model to investigate optoelectronic properties of semiconductor nanostructures. Dissertation, University of Paderborn, Paderborn, Germany (2010)
Chen, Y.: Gold Nanostructures born from the Fe–Au Eutectoid: Electrochemical and Physical Investigations. Dissertation, Ruhr-Universität-Bochum, Bochum, Germany (2009)
Grabowski, B.: Towards ab initio assisted materials design: DFT based thermodynamics up to the melting point. Dissertation, University of Paderborn, Paderborn, Germany (2009)
Aghajani, A.: Evolution of microstructure during long-term creep of a tempered martensite ferritic steel. Dissertation, Ruhr-University Bochum, Bochum (2009)
Huynh, N. N.: Modelling of Microstructure Evolution and Crack Opening in FCC Materials under Tension. Dissertation, Wollongong University, Wollongong New South Wales [Australia] (2009)
The Department of Interface Chemistry and Surface Engineering (GO) is mainly focussing on corrosion and electrochemical energy conversion. It is internationally known to be one of the leading groups in the field of electrochemical sciences. Our mission is to combine both fundamental and applied sciences to tackle key-questions for a progress…
Plasticity, fatigue, and fracture of materials arise from localized deformation processes, which can be altered by the materials’ environment. Unravelling these mechanisms at variable temperatures and different atmospheres (like hydrogen), are essential to enhance mechanical performance and lifespan. This requires to understand the microstructure and its evolution down to the atomic level. The department is dedicated to crafting materials with superior mechanical properties by elucidating deformation mechanisms. This involves employing advanced transmission electron microscopy techniques and conducting nano-/micromechanical tests on complex, micro-architectured and/or miniaturized materials.
The department ‘Microstructure Physics and Alloy Design’ investigates the fundamentals of the relations between synthesis, microstructure and properties of often complex nanostructured materials. The focus lies on metallic alloys such as aluminium, titanium, steels, high and medium entropy alloys, superalloys, magnesium, magnetic and thermoelectric…
The mission of the Department Computational Materials Design (CM) is to develop and apply multi-scale computational methods that bridge the quantum mechanical foundations of matter with real-world materials discovery.