References

  1. D. Raabe, P. Klose, B. Engl, K.-P. Imlau, F. Friedel, and F. Roters. Concepts for integrating plastic anisotropy into metal forming simulations. Adv. Eng. Mater., 4: 169–180, 2002.
  2. D. Raabe, F. Roters, F. Barlat, and L.-Q. Chen, editors. Continuum Scale Simulation of Engineering Materials, Fundamentals -Microstructures -Process Applications. Wiley-VCH, Weinheim, Germany (ISBN 3-527-30760-5), 2004.
  3. G. Sachs. Zur Ableitung einer Fliessbedingung. Z. VDI, 72:734–736, 1928.
  4. G. I. Taylor. Plastic strain in metals. J. Inst. Metals, 62:307–324, 1938.
  5. J. F. W. Bishop and R. Hill. A Theory of the Plastic Distortion of a Polycrystalline Aggregate under combined stresses. Philos. Mag., 42:414–427, 1951.
  6. J. F. W. Bishop and R. Hill. A Theoretical Derivation of the Plastic Properties of a Polycrystalline Face Centered Metal. Philos. Mag., 42:1298–1307, 1951.
  7. E. Kr¨oner. On the plastic deformation of polycrystals. Acta Metall., 9:155–161, 1961.
  8. W. A. Curtin and R. E. Miller. Atomistic/continuum coupling in computational materials science. Modelling Simul. Mater. Sci. Eng., 11:R33–R68, 2003.
  9. A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov. On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J. Mech. Phys. Solids, 52(6):1213–1246, 2004.
  10. V. Vitek, M. Mrovec, and J. L. Bassani. Influence of non-glide stresses on plastic flow: From atomistic to continuum modeling. Mat. Sci. Eng. A, 365:31–37, 2004.
  11. O. C. Zienkiewicz. The Finite Element Method in Structural and Continuum Mechanics. McGraw-Hill, New York, 1st edition, 1967.
  12. O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, 6th edition, 2005.
  13. Z. Zhao, W. Mao, F. Roters, and D. Raabe. A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method. Acta Mater., 52:1003–1012, 2004
  14. M. Sachtleber, Z. Zhao, and D. Raabe. Experimental investigation of plastic grain interaction. Mat. Sci. Eng. A, 336(1-2):81–87, 2002.
  15. D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, and Z. Zhao. Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater., 51:1539–1560, 2003.
  16. J. R. Rice. Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids, 19:433–455, 1971.
  17. R. J. Asaro and J. R. Rice. Strain localization in ductile single crystals. J. Mech. Phys. Solids, 25:309–338, 1977.
  18. A. Arsenlis and D. M. Parks. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater., 47(5):1597–1611, 1999.
  19. A. Arsenlis and D.M. Parks. Modeling the evolution of crystallographic dislocation density in crystal plasticity. J. Mech. Phys. Solids, 50(9):1979–2009, 2002.
  20. L. P. Evers, D. M. Parks, W. A. M. Brekelmans, and M. G. D. Geers. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J. Mech. Phys. Solids, 50(11):2403–2424, 2002.
  21. L. P. Evers, W. A. M. Brekelmans, and M. G. D. Geers. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int. J. Solids Struct., 41(10):5209–5230, 2004.
  22. K.-S. Cheong and E. P. Busso. Discrete dislocation density modelling of single phase FCC polycrystal aggregates. Acta Mater., 52:5665–5675, 2004.
  23. A. Ma and F. Roters. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals. Acta Mater., 52(12):3603–3612, 2004.
  24. A. Ma, F. Roters, and D. Raabe. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater., 54:2169–2179, 2006.
  25. A. Ma, F. Roters, and D. Raabe. On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling-theory, experiments, and simulations. Acta Mater., 54:2181–2194, 2006.
  26. L. P. Evers, W. A. M. Brekelmans, and M. G. D. Geers. Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids, 52(10):2379–2401, 2004.
  27. D. Peirce, R. J. Asaro, and A. Needleman. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall., 30:1087–1119, 1982.
  28. R. Becker. Effects of strain localization on surface roughening during sheet forming. Acta Mater., 46:1385–1401, 1998.
  29. Z. Zhao, R. Radovitzky, and A. Cuiti˜no. A study of surface roughening in fcc metals using direct numerical simulation. Acta Mater., 52(20):5791–5804, 2004.
  30. Z. F. Yue. Surface roughness evolution under constant amplitude fatigue loading using crystal plasticity. Engineering Fracture Mechanics, 72:749–757, 2005.
  31. F. Siska, S. Forest, and P. Gumbsch. Simulations of stress strain heterogeneities in copper thin films: Texture and substrate effects. Comp. Mater. Sci., 39:137–141, 2007.
  32. Z. Zhao, M. Ramesh, D. Raabe, A. Cuiti˜no, and R. Radovitzky. Investigation of Three-Dimensional Aspects of Grain-Scale Plastic Surface Deformation of an Aluminum Oligocrystal. Int. J. Plasticity, 24:2278–2297, 2008.
  33. R. Becker and S. Panchanadeeswaran. Effects of grain interactions on deformation and local texture in polycrystals. Acta Mater., 43:2701–2719, 1995.
  34. D. P. Mika and P. R. Dawson. Effects of grain interaction on deformation in polycrystals. Mat. Sci. Eng. A, 257:62–76, 1998.
  35. A. Acharya and A. J. Beaudoin. Grain-size effect in viscoplastic polycrystals at moderate strains. J. Mech. Phys. Solids, 48:2213–2230, 2000.
  36. F. T. Meissonnier, E. P. Busso, and N. P. O’Dowd. Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains. Comp. Mater. Sci., 17:601–640, 2001.
  37. F. Barbe, L. Decker, D. Jeulin, and G. Cailletaud. Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model. Int. J. Plasticity, 17: 513–536, 2001.
  38. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer. Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater., 49(17):3433–3441, 2001.
  39. S. J. Park, H. N. Han, K. H. Oh, D. Raabe, and J. K. Kim. Finite element simulation of grain interaction and orientation fragmentation during plastic deformation of BCC metals. Mat. Sci. Forum, 408–4:371–376, 2002.
  40. A. P. Clarke, F. J. Humphreys, and P. S. Bate. Lattice rotations at large secondphase particles in polycrystalline aluminum. Mat. Sci. Forum, 426:399–404, 2003.
  41. Y. J. Wei and L. Anand. Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J. Mech. Phys. Solids, 52:2587– 2616, 2004.
  42. H.-H. Fu, D. J. Benson, and M. A. Meyers. Computational description of nanocrystalline deformation based on crystal plasticity. Acta Mater., 52:4413–4425, 2004.
  43. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud. Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int. J. Plasticity, 21:691–722, 2005.
  44. P. S. Bate and W. B. Hutchinson. Grain boundary area and deformation. Scripta Mater., 52:199–203, 2005.
  45. Y. J. Wei, C. Su, and L. Anand. A computational study on the mechanical behavior of nanocrystalline fcc metals. Acta Mater., 54:3177–3190, 2006.
  46. B. P. Murphy, H. Cuddy, F. J. Harewood, T. Connolley, and P. E. McHugh. The influence of grain size on the ductility of micro-scale stainless steel stent struts. J. Mat. Sci. – Mat. Med., 17:1–6, 2006.
  47. D. Deka, D. S. Joseph, S. Ghosh, and M. J. Mills. Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Metall. Mater. Trans. A, 37: 1371–1388, 2006.
  48. W. A. Counts, M. V. Braginsky, C. C. Battaile, and E. A. Holm. Predicting the Hall–Petch effect in fcc metals using non-local crystal plasticity. Int. J. Plasticity, in press, 2007.
  49. M. E. Gurtin, L. Anand, and S. P. Lele. Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids, 55:1853–1878, 2007.
  50. G. Venkatramani, S. Ghosh, and M. Mills. A size-dependent crystal plasticity finiteelement model for creep and load shedding in polycrystalline titanium alloys. Acta Mater., 55:3971–3986, 2007.
  51. D. Okumura, Y. Higashi, K. Sumida, and N. Ohno. A homogenization theory of strain gradient single crystal plasticity and its finite element discretization. Int. J. Plasticity, 23:1148–1166, 2007.
  52. J. M. Gerken and P. R. Dawson. A finite element formulation to solve a non-local constitutive model with stresses and strains due to slip gradients. Comput. Methods Appl. Mech. Eng., 197:1343–1361, 2008.
  53. J. M. Gerken and P. R. Dawson. A crystal plasticity model that incorporates stresses and strains due to slip gradients. J. Mech. Phys. Solids, 56:1651–1672, 2008.
  54. M. Kuroda and V. Tvergaard. On the formulations of higher-order strain gradient crystal plasticity models. J. Mech. Phys. Solids, 56:1591–1608, 2008.
  55. E. Bitzek, P.M. Derlet, P.M. Anderson, and H. Van Swygenhoven. The stress-strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Mater., 56:4846–4857, 2008.
  56. U. Borg, C. F. Niordson, and J. W. Kysar. Size effects on void growth in single crystals with distributed voids. Int. J. Plasticity, 24:688–701, 2008.
  57. L. Li, P. M. Anderson, M.-G. Lee, E. Bitzek, P. Derlet, and H Van Swygenhoven. The stress-strain response of nanocrystalline metals: A quantized crystal plasticity approach. Acta Mater., 57:812–822, 2009.
  58. P. E. McHugh and R. Mohrmann. Modelling of creep in a Ni base superalloy using a single crystal plasticity model. Comp. Mater. Sci., 9:134–140, 1997.
  59. S. Balasubramanian and L. Anand. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium. Acta Mater., 50:133–148, 2002.
  60. V. Hasija, S. Ghosh, M. J. Mills, and D. S. Joseph. Deformation and creep modeling in polycrystalline Ti-6Al alloys. Acta Mater., 51:4533–4549, 2003.
  61. A. F. Bower and E. Wininger. A two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation. J. Mech. Phys. Solids, 52:1289–1317, 2004.
  62. S. Agarwal, C. L. Briant, P. E. Krajewski, A. F. Bower, and E. M. Taleff. Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation. J. Mat. Eng. Perf., 16:170–178, 2007.
  63. G. Venkataramani, K. Kirane, and S. Ghosh. Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model. Int. J. Plasticity, 24:428–454, 2008.
  64. B. Xu, A. Yonezu, Z. Yue, and X. Chen. Indentation creep surface morphology of nickel-based single crystal superalloys. Comp. Mater. Sci., 46:275–285, 2009.
  65. A. Arsenlis and M. Tang. Simulations on the growth of dislocation density during Stage 0 deformation in BCC metals. Modelling Simul. Mater. Sci. Eng., 11:251–264, 2003.
  66. D L McDowell. Viscoplasticity of heterogeneous metallic materials. Mat. Sci. Eng. R, 62:67–123, 2008.
  67. F. Marketz and F. D. Fischer. Micromechanical modelling of stress-assisted martensitic transformation. Modelling Simul. Mater. Sci. Eng., 2:1017–1046, 1994.
  68. F. Marketz and F. D. Fischer. A mesoscale study on the thermodynamic effect of stress on martensitic transformation. Metall. Mater. Trans. A, 26:267–278, 1995.
  69. Y. Tomita and T. Iwamoto. Constitutive modeling of TRIP steel and its application to the improvement of the mechanical properties. Int. J. Mech. Sci., 37:1295–1305, 1995.
  70. J. M. Diani, H. Sabar, and M. Berveiller. Micromechanical modelling of the transformation induced plasticity (TRIP) phenomenon in steels. Int. J. Eng. Sci., 33: 1921–1934, 1995.
  71. J. M. Diani and D. M. Parks. Effects of strain state on the kinetics of strain-induced martensite in steels. J. Mech. Phys. Solids, 46(9):1613–1635, 1998.
  72. M. Cherkaoui, M. Berveiller, and H. Sabar. Micromechanical modeling of martensitic transformation-induced plasticity (TRIP) in austenitic single crystals. Int. J. Plasticity, 14:597–626, 1998.
  73. M. Cherkaoui, M. Berveiller, and X. Lemoine. Coupling between plasticity and martensitic phase transformation: Overall behavior of polycrystalline TRIP steels. Int. J. Plasticity, 16:1215–1241, 2000.
  74. P. Thamburaja and L. Anand. Polycrystalline shape-memory materials: effect of crystallographic texture. J. Mech. Phys. Solids, 49:709–737, 2001.
  75. Y. Tomita and T. Iwamoto. Computational prediction of deformation behavior of TRIP steels under cyclic loading. Int. J. Mech. Sci., 43:2017–2034, 2001.
  76. S. Govindjee and C. Miehe. A multi-variant martensitic phase transformation model: Formulation and numerical implementation. Comput. Methods Appl. Mech. Eng., 191:215–238, 2001.
  77. L. Anand and M. E. Gurtin. Thermal effects in the superelasticity of crystalline shape-memory materials. J. Mech. Phys. Solids, 51:1015–1058, 2003.
  78. S. Turteltaub and A. S. J. Suiker. Transformation-induced plasticity in ferrous alloys. J. Mech. Phys. Solids, 53:1747–1788, 2005.
  79. P. Thamburaja. Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J. Mech. Phys. Solids, 53:825–856, 2005.
  80. Y. J. Lan, N. M. Xiao, D. Z. Li, and Y. Y. Li. Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Mater., 53:991–1003, 2005.
  81. S. Turteltaub and A. S. J. Suiker. Grain size effects in multiphase steels assisted by transformation-induced plasticity. Int. J. Solids Struct., 43:7322–7336, 2006.
  82. D. D. Tjahjanto, S. Turteltaub, and A. S. J. Suiker. Crystallographically-based model for transformation-induced plasticity in multiphase carbon steels. Continuum Mech. Therm., 19:399–422, 2008. To appear.
  83. M. G. D. Geers and V. G. Kouznetsova. Modeling the interaction between plasticity and the austenite-martensite transformation. Int. J. Multiscale Com., 5:129–140, 2007.
  84. D. Peirce, R. J. Asaro, and A. Needleman. Material rate dependence and localized deformation in crystalline solids. Acta Metall., 31:1951–1976, 1983.
  85. A. J. Beaudoin, P. R. Dawson, K. K. Mathur, and U. F. Kocks. A hybrid finite element formulation for polycrystal plasticity with consideration of macrostructural and microstructural linking. Int. J. Plasticity, 11:501–521, 1995.
  86. G. B. Sarma and P. R. Dawson. Texture predictions using a polycrystal plasticity model incorporating neighbor interactions. Int. J. Plasticity, 12(8):1023–1054, 1996.
  87. G. B. Sarma and P. R. Dawson. Effects of interactions among crystals on the inhomogeneous deformations of polycrystals. Acta Mater., 44:1937–1953, 1996.
  88. G. B. Sarma, B. Radhakrishnan, and T. Zacharia. Finite element simulations of cold deformation at the mesoscale. Comp. Mater. Sci., 12:105–123, 1998.
  89. S. Forest. Modeling slip, kink and shear banding in classical and generalized single crystal plasticity. Acta Mater., 46:3265–3281, 1998.
  90. A. Bhattacharyya, E. El-Danaf, S. R. Kalidindi, and R. D. Doherty. Evolution of grain-scale microstructure during large strain simple compression of polycrystalline aluminum with quasi-columnar grains: OIM measurements and numerical simulations. Int. J. Plasticity, 17:861–883, 2001.
  91. M. P. Miller and T. J. Turner. A methodology for measuring and modeling crystallographic texture gradients in processed alloys. Int. J. Plasticity, 17:783–805, 2001.
  92. D. Raabe, Z. Zhao, S.-J. Park, and F. Roters. Theory of orientation gradients in plastically strained crystals. Acta Mater., 50:421–440, 2002.
  93. H.-K. Kim and S.-I. Oh. Finite element analysis of grain-by-grain deformation by crystal plasticity with couple stress. Int. J. Plasticity, 19:1245–1270, 2003.
  94. S. H. Choi. Simulation of stored energy and orientation gradients in cold-rolled interstitial free steels. Acta Mater., 51:1775–1788, 2003.
  95. S. Zaefferer, J.-C. Kuo, Z. Zhao, M. Winning, and D. Raabe. On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater., 51(16):4719–4735, 2003.
  96. P. Erieau and C. Rey. Modeling of deformation and rotation bands and of deformation induced grain boundaries in IF steel aggregate during large plane strain compression. Int. J. Plasticity, 20:1763–1788, 2004.
  97. G. B. Sarma and B. Radhakrishnan. Modeling microstructural effects on the evolution of cube texture during hot deformation of aluminum. Mat. Sci. Eng. A, 385: 91–104, 2004.
  98. F. Roters, Y. Wang, J.-C. Kuo, and D. Raabe. Comparison of single crystal simple shear deformation experiments with crystal plasticity finite element simulations. Adv. Eng. Mater., 6(8):653–656, 2004.
  99. K.-H. Kim, H.-K. Kim, and S.-I. Oh. Deformation behavior of pure aluminum specimen composed of a few grains during simple compression. J. Mater. Process. Tech., 171:205–213, 2006.
  100. J. Q. daFonseca, E. C. Oliver, P. S. Bate, and P. J. Withers. Evolution of intergranular stresses during in situ straining of IF steel with different grain sizes. Mat. Sci. Eng. A, 437:26–32, 2006.
  101. X. You, T. Connolley, P. E. McHugh, H. Cuddy, and C. Motz. A combined experimental and computational study of deformation in grains of biomedical grade 316LVM stainless steel. Acta Mater., 54:4825–4840, 2006.
  102. A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan, and G. Cailletaud. Three-dimensional finite element simulation of a polycrystalline copper specimen. Acta Mater., 55:4121–4136, 2007.
  103. T.-S. Han and P. R. Dawson. A two-scale deformation model for polycrystalline solids using a strongly-coupled finite element methodology. Comput. Methods Appl. Mech. Eng., 196:2029–2043, 2007.
  104. F. Zhang, A. F. Bower, R. K. Mishra, and K. P. Boyle. Numerical simulations of necking during tensile deformation of aluminum single crystals. Int. J. Plasticity, 25:49–69, 2009.
  105. R. J. Asaro and A. Needleman. Texture development and strain hardening in rate dependent polycrystals. Acta Metall., 33:923–953, 1985.
  106. R. Becker. Analysis of texture evolution in channel die compression—I. Effects of grain interaction. Acta Metall. Mater., 39:1211–1230, 1991.
  107. R. Becker, J. F. Butler, H. Hu, and L. A. Lalli. Analysis of an Aluminum Single Crystal with Unstable Initial Orientation (001) 111in Channel Die Compression. Metall. Trans. A, 22:45–58, 1991.
  108. C. A. Bronkhorst, S. R. Kalidindi, and L. Anand. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos. T. Roy. Soc. London A, 341(1662):443–477, 1992.
  109. S. R. Kalidindi, C. A. Bronkhorst, and L. Anand. Crystallographic texture evolution in bulk deformation processing of fcc metals. J. Mech. Phys. Solids, 40:537–569, 1992.
  110. A. J. Beaudoin, H. Mecking, and U. F. Kocks. Development of localized orientation gradients in fcc polycrystals. Philos. Mag. A, 73:1503–1517, 1996.
  111. A. Bertram, T. B¨ohlke, and M. Kraska. Numerical simulation of deformation induced anisotropy of polycrystals. Comp. Mater. Sci., 9:158–167, 1997.
  112. D. P. Mika and P. R. Dawson. Polycrystal plasticity modeling of intracrystalline boundary textures. Acta Mater., 47:1355–1369, 1999.
  113. C. Miehe, J. Schr¨oder, and J. Schotte. Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng., 171:387–418, 1999.
  114. S. R. Kalidindi. Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals. Int. J. Plasticity, 17:837–860, 2001.
  115. P. Van Houtte, L. Delannay, and S. R. Kalidindi. Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction. Int. J. Plasticity, 18:359–377, 2002.
  116. L. Delannay, S. R. Kalidindi, and P. Van Houtte. Quantitative prediction of textures in aluminium cold rolled to moderate strains. Mat. Sci. Eng. A, 336:233–244, 2002.
  117. D. Raabe, Z. Zhao, and W. Mao. On the dependence of in-grain subdivision and deformation texture of aluminum on grain interaction. Acta Mater., 50:4379–4394, 2002.
  118. P.S. Bate and Y.G. An. Plastic anisotropy in AA5005 Al-1Mg: predictions using crystal plasticity finite element analysis. Scripta Mater., 51:973–977, 2004.
  119. D. Raabe, Z. Zhao, and F. Roters. Study on the orientational stability of cubeoriented FCC crystals under plane strain by use of a texture component crystal plasticity finite element method. Scripta Mater., 50:1085–1090, 2004.
  120. S. Y. Li, P. Van Houtte, and S. R. Kalidindi. A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method. Modelling Simul. Mater. Sci. Eng., 12:845–870, 2004.
  121. L. Anand. Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strains. Comput. Methods Appl. Mech. Eng., 193: 5359–5383, 2004.
  122. F. Roters, H. S. Jeon-Haurand, and D. Raabe. A Texture Evolution Study Using the Texture Component Crystal Plasticity FEM. Mat. Sci. Forum, 495–497:937–944, 2005.
  123. P. Van Houtte, A. Van Bael, M. Seefeldt, and L. Delannay. The application of multiscale modelling for the prediction of plastic anisotropy and deformation textures. Mat. Sci. Forum, 495–497:31–41, 2005.
  124. S. Li, S. R. Kalidindi, and I. J. Beyerlein. A crystal plasticity finite element analysis of texture evolution in equal channel angular extrusion. Mat. Sci. Eng. A, 410–411: 207–212, 2005.
  125. P. Van Houtte, A. K. Kanjarla, A. Van Bael, M. Seefeldt, and L. Delannay. Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials. European Journal of Mechanics -A Solids, 25:634–648, 2006.
  126. L. Delannay, P.J. Jacques, and S.R. Kalidindi. Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int. J. Plasticity, 22:1879– 1898, 2006.
  127. J. G. Tang, X. M. Zhang, Z. Y. Chen, and Y. L. Deng. Simulation of rolling deformation texture of fcc metals with crystal plasticity finite element model. Mat. Sci. Tech., 22:1171–1176, 2006.
  128. I. Tikhovskiy, D. Raabe, and F. Roters. Simulation of the deformation texture of a 17stainless steel using the texture component crystal plasticity FE method considering texture gradients. Scripta Mater., 54:1537–1542, 2006.
  129. M. G. Lee, J. Wang, and P. M. Anderson. Texture evolution maps for upset deformation of body-centered cubic metals. Mat. Sci. Eng. A, 463:263–270, 2007.
  130. I. Tikhovskiy, D. Raabe, and F. Roters. Simulation of earing during deep drawing of an Al-3(AA 5754) using a texture component crystal plasticity FEM. J. Mater. Process. Tech., 183:169–175, 2007
  131. J. R. Mayeur, D. L. McDowell, and R. W. Neu. Crystal plasticity simulations of fretting of Ti-6Al-4V in partial slip regime considering effects of texture. Comp. Mater. Sci., 41:356–365, 2008.
  132. L. Delannay, M.A. Melchior, J.W. Signorelli, J.F. Remacle, and T. Kuwabara. Influence of grain shape on the planar anisotropy of rolled steel sheets – evaluation of three models. Comp. Mater. Sci., 45:739–743, 2009.
  133. A. J. Beaudoin, K. K. Mathur, P. R. Dawson, and G. C. Johnson. Three-dimensional deformation process simulation with explicit use of polycrystal plasticity models. Int. J. Plasticity, 9:833–860, 1993.
  134. A. J. Beaudoin, P. R. Dawson, K. K. Mathur, U. F. Kocks, and D. A. Korzekwa. Application of polycrystal plasticity to sheet forming. Comp. Meth. Appl. Mech. Engin., 117:49–70, 1994.
  135. K. W. Neale. Use of crystal plasticity in metal forming simulations. Int. J. Mech. Sci., 35:1053–1063, 1993.
  136. S. R. Kalidindi and S. E. Schoenfeld. On the prediction of yield surfaces by the crystal plasticity models for fcc polycrystals. Mat. Sci. Eng. A, 293:120–129, 2000.
  137. E. Nakamachi, C. L. Xie, and M. Harimoto. Drawability assessment of BCC steel sheet by using elastic/crystalline viscoplastic finite element analyses. Int. J. Mech. Sci., 43:631–652, 2001.
  138. Z. Zhao, W. Mao, F. Roters, and D. Raabe. Introduction of a Texture Component Crystal Plasticity Finite Element Method for Anisotropy Simulations. Adv. Eng. Mater., 3:984–990, 2001.
  139. C. L. Xie and E. Nakamachi. Investigations of the formability of BCC steel sheets by using crystalline plasticity finite element analysis. Materials & Design, 23:59–68, 2002.
  140. C.-H. Goh, R. W. Neu, and D. L. McDowell. Crystallographic plasticity in fretting of Ti-6AL-4V. Int. J. Plasticity, 19:1627–1650, 2003.
  141. J. P. McGarry, B. P. O’Donnell, P. E. McHugh, and J. G. McGarry. Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comp. Mater. Sci., 31:421–438, 2004.
  142. D. Raabe and F. Roters. Using texture components in crystal plasticity finite element simulations. Int. J. Plasticity, 20:339–361, 2004.
  143. P. Tugcu, K. W. Neale, P. D. Wu, and K. Inal. Crystal plasticity simulation of the hydrostatic bulge test. Texture Microstruct., 20:1603–1653, 2004.
  144. L. Delannay, M. Beringhier, Y. Chastel, and R. E. Loge. Simulation of Cup-Drawing Based on Crystal Plasticity Applied to Reduced Grain Samplings. Mat. Sci. Forum, 495–497:1639–1644, 2005.
  145. D. Raabe, Y. Wang, and F. Roters. Crystal plasticity simulation study on the influence of texture on earing in steel. Comp. Mater. Sci., 34:221–234, 2005.
  146. T. Dick and G. Cailletaud. Fretting modelling with a crystal plasticity model of Ti6Al4V. Comp. Mater. Sci., 38:113–125, 2006.
  147. Y. P. Chen, W. B. Lee, and S. To. Influence of initial texture on formability of aluminum sheet metal by crystal plasticity FE simulation. J. Mater. Process. Tech., 192–193:397–403, 2007.
  148. D. Raabe. Recrystallization Models for the Prediction of Crystallographic Textures with Respect to Process Simulation. J. Strain Analysis Engin. Design, 42:253–268, 2007.
  149. E. Nakamachi, N. N. Tam, and H. Morimoto. Multi-scale finite element analyses of sheet metals by using SEM-EBSD measured crystallographic RVE models. Int. J. Plasticity, 23:450–489, 2007.
  150. J. Ocenasek, M. Rodriguez Ripoll, S. M. Weygand, and H. Riedel. Multi-grain finite element model for studying the wire drawing process. Comp. Mater. Sci., 39:23–28, 2007.
  151. S. Li, B. R. Donohue, and S. R. Kalidindi. A crystal plasticity finite element analysis of cross-grain deformation heterogeneity in equal channel angular extrusion and its implications for texture evolution. Mat. Sci. Eng. A, 480:17–23, 2008.
  152. H.J. Li, Z. Jiang, J.T. Han, D.B. Wei, H.C. Pi, and A.K. Tieu. Crystal plasticity finite element modeling of necking of pure aluminium during uniaxial tensile deformation. Steel Res., 2:655–662, 2008.
  153. W. M. Zhuang, S.W. Wang, J. Cao, L.G. Lin, and C. Hart. Hydroforming of micro tubes: crystal plasticity finite element modeling. Steel Res., spec. issue 1:293–300, 2008.
  154. A. Zamiri, T. R. Bieler, and F. Pourboghrat. Anisotropic Crystal Plasticity Finite Element Modeling of the Effect of Crystal Orientation and Solder Joint Geometry on Deformation after Temperature Change. J. Electron. Mat., 38:231–240, 2009.
  155. P. Bate. Modelling deformation microstructure with the crystal plasticity finiteelement method. Philos. T. Roy. Soc. London A, 357:1589–1601, 1999.
  156. D. Raabe and R. Becker. Coupling of a crystal plasticity finite element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminum. Modelling Simul. Mater. Sci. Eng., 8:445–462, 2000.
  157. D. Raabe. Yield surface simulation for partially recrystallized aluminum polycrystals on the basis of spatially discrete data. Comp. Mater. Sci., 19:13–26, 2000.
  158. B. Radhakrishnan, G. Sarma, H. Weiland, and P. Baggethun. Simulations of deformation and recrystallization of single crystals of aluminum containing hard particles. Modelling Simul. Mater. Sci. Eng., 8:737–750, 2000.
  159. D. Raabe. Cellular automata in materials science with particular reference to recrystallization simulation. Annual Review of Materials Research, 32:53–76, 2002.
  160. T. Takaki, Y. Yamanaka, Y. Higa, and Y. Tomita. Phase-field model during static recrystallization based on crystal-plasticity theory. J. Computer-Aided Mater. Des., 14:75–84, 2007.
  161. S. L. Semiatin, D. S. Weaver, R. L. Goetz, J. P. Thomas, and T. J. Turner. Deformation and recrystallization during thermomechanical processing of a nickel-base superalloy ingot material. Mat. Sci. Forum, 550:129–140, 2007.
  162. C. Zambaldi, F. Roters, D. Raabe, and U. Glatzel. Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy. Mat. Sci. Eng. A, 454–455:433–440, 2007.
  163. R. Loge, M. Bernacki, H. Resk, L. Delannay, H. Digonnet, Y. Chastel, andT. Coupez. Linking plastic deformation to recrystallization in metals using digital microstructures. Philos. Mag., 88, 2008.
  164. S. R. Kalidindi. Incorporation of deformation twinning in crystal plasticity models.J. Mech. Phys. Solids, 46:267–290, 1998.
  165. A. Staroselsky and L. Anand. Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning. J. Mech. Phys. Solids, 46:671–696, 1998.
  166. W. T. Marketz, F. D. Fischer, F. Kauffmann, G. Dehm, T. Bidlingmaier, A. Wanner, and H. Clemens. On the role of twinning during room temperature deformation of TiAl based alloys. Mat. Sci. Eng. A, 329–331:177–183, 2002.
  167. A. Staroselskya and L. Anand. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. Int. J. Plasticity, 19: 1843–1864, 2003.
  168. W. T. Marketz, F. D. Fischer, and H. Clemens. Deformation mechanisms in TiAl intermetallics -experiments and modeling. Int. J. Plasticity, 19:281–321, 2003.
  169. A. A. Salem, S. R. Kalidindi, and S. L. Semiatin. Strain hardening due to deformation twinning in α-titanium: Constitutive relations and crystal-plasticity modeling. Acta Mater., 53:3495–3502, 2005.
  170. Y. Wang, D. Raabe, C. Klüber, and F. Roters. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater., 52:2229–2238, 2004.
  171. N. Zaafarani, D. Raabe, R. N. Singh, F. Roters, and S. Zaefferer. Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater., 54:1707–1994, 2006.
  172. D. Raabe, D. Ma, and F. Roters. Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater., 55:4567–4583, 2007.
  173. O. Casals, J. Ocenasek, and J. Alcala. Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals. Acta Mater., 55:55–68, 2007.
  174. N. Zaafarani, D. Raabe, F. Roters, and S. Zaefferer. On the origin of deformationinduced rotation patterns below nanoindents. Acta Mater., 56:31–42, 2008.
  175. J. Alcala, O. Casals, and J. Ocenasek. Micromechanics of pyramidal indentation in fcc metals: Single crystal plasticity finite element analysis. J. Mech. Phys. Solids, 56:3277–3303, 2008.
  176. F. Weber, I. Schestakow, F. Roters, and D. Raabe. Texture evolution during bending of a single crystal copper nanowire studied by EBSD and crystal plasticity finite element simulations. Adv. Eng. Mater., 10:737–741, 2008
  177. E. Demir, D. Raabe, N. Zaafarani, and S. Zaefferer. Experimental investigation of geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater., 57:559–569, 2009.
  178. C. Miehe. Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals. Int. J. Numer. Meth. Eng., 39:3367–3390, 1996.
  179. V. Bachu and S. R. Kalidindi. On the accuracy of the predictions of texture evolution by the finite element technique for fcc polycrystals. Mat. Sci. Eng. A, 257:108–117, 1998.
  180. F. J. Harewood and P. E. McHugh. Investigation of finite element mesh independence in rate dependent materials. Comp. Mater. Sci., 37:442–453, 2006.
  181. A. V. Amirkhizi and S. Nemat-Nasser. A framework for numerical integration of crystal elasto-plastic constitutive equations compatible with explicit finite element codes. Int. J. Plasticity, 23:1918–1937, 2007.
  182. F. J. Harewood and P. E. McHugh. Comparison of the implicit and explicit finite element methods using crystal plasticity. Comp. Mater. Sci., 39:481–494, 2007.
  183. S. N. Kuchnicki, A. M. Cuiti˜no, and R. A. Radovitzky. Efficient and robust constitutive integrators for single-crystal plasticity modeling. Int. J. Plasticity, 22: 1988–2011, 2006.
  184. M. A. Melchior and L. Delannay. A texture discretization technique adapted to polycrystalline aggregates with non–uniform grain size. Comp. Mater. Sci., 37:557– 564, 2006.
  185. Z. Zhao, S. Kuchnicki, R. Radovitzky, and A. Cuiti˜no. Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM. Acta Mater., 55:2361–2373, 2007.
  186. H. W. Li, H. Yang, and Z. C. Sun. A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method. Int. J. Plasticity, 24:267–288, 2008.
  187. H. Ritz and P. R. Dawson. Sensitivity to grain discretization of the simulated crystal stress distributions in FCC polycrystals. Modelling Simul. Mater. Sci. Eng., 17, 2009.
  188. N. R. Barton, J. Knap, A. Arsenlis, R. Becker, R. D. Hornung, and D. R. Jefferson. Embedded polycrystal plasticity and adaptive sampling. Int. J. Plasticity, 24:242– 266, 2008.
  189. M. S. Bruzzi, P. E. McHugh, F. O’Rourke, and T. Linder. Micromechanical modelling of the static and cyclic loading of an Al 2124-SiC MMC. Int. J. Plasticity, 17: 565–599, 2001.
  190. H. S. Turkmen, P. R. Dawson, and M. P. Miller. The evolution of crystalline stresses of a ploycrystalline metal during cyclic loading. Int. J. Plasticity, 18:941–969, 2002.
  191. H. S. Turkmen, R. E. Loge, P. R. Dawson, and M. P. Miller. On the mechanical behavior of AA 7075-t6 during cyclic loading. Int. J. Fatigue, 25:267–281, 2003.
  192. J. W. Kysar, Y. X. Gan, and G. Mendez-Arzuza. Cylindrical void in a rigid-ideally plastic single crystal. Part I: Anisotropic slip line theory solution for face-centered cubic crystals. Int. J. Plasticity, 21:1481–1520, 2005.
  193. S. Sinha and S. Ghosh. Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int. J. Fatigue, 28:1690– 1704, 2006.
  194. G. P. Potirniche, J. L. Hearndon, M. F. Horstemeyer, and X. W. Ling. Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plasticity, 22:921–942, 2006.
  195. M. Zhang, J. Zhang, and D. L. McDowell. Microstructure-based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V. Int. J. Plasticity, 23:1328–1348, 2007.
  196. K.-S. Cheong, M. J. Smillie, and D. M. Knowles. Predicting fatigue crack initiation through image-based micromechanical modeling. Acta Mater., 55:1757–1768, 2007.
  197. F. P. E. Dunne, A. Walker, and D. Rugg. A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue. Proc. Roy. Soc. London A, 463:1467–1489, 2007.
  198. W. H. Liu, X. M. Zhang, J. G. Tang, and Y. Du. Simulation of void growth and coalescence behavior with 3D crystal plasticity theory. Comp. Mater. Sci., 40:130– 139, 2007.
  199. T. R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D. E. Mason, M. A. Crimp, and D. Raabe. The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plasticity, 25:1655–1683, 2009
  200. D. Kumar, T. R. Bieler, P. Eisenlohr, D. E. Mason, M. A. Crimp, F. Roters, and D. Raabe. On Predicting Nucleation of Microcracks Due to Slip-Twin Interactions at Grain Boundaries in Duplex γ-TiAl. J. Eng. Mater. Tech., 130:021012–1–021012–12, 2008.
  201. S. D. Patil, R. Narasimhan, P. Biswas, and R. K. Mishra. Crack tip fields in a single edge notched aluminum single crystal specimen. J. Eng. Mater. Tech., 130, 2008.
  202. I. Watanabe, K. Terada, E. A. deSouza, and D. Peric. Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis. J. Mech. Phys. Solids, 56:1105–1125, 2008.
  203. T. Mayama, K. Sasaki, and M. Kuroda. Quantitative evaluations for strain amplitude dependent organization of dislocation structures due to cyclic plasticity in austenitic stainless steel 316L. Acta Mater., 56:2735–2743, 2008.
  204. C. Hartig and H. Mecking. Finite element modelling of two phase FeCu polycrystals. Comp. Mater. Sci., 32:370–377, 2005.
  205. D. D. Tjahjanto, F. Roters, and P. Eisenlohr. Iso-work-rate weighted-Taylor homogenization scheme for multiphase steels assisted by transformation-induced plasticity effect. Steel Res. Int., 78(10–11):777–783, 2007.
  206. K. Inal, H. M. Simha, and R. K. Mishra. Numerical modeling of second-phase particle effects on localized deformation. J. Eng. Mater. Tech., 130, 2008.
  207. T. J. Vogler and J. D. Clayton. Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J. Mech. Phys. Solids, 56:297–335, 2008.
  208. L. Anand and C. Sun. A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J. Mech. Phys. Solids, 53: 1362–1396, 2005.
  209. L. Anand and C. Su. A constitutive theory for metallic glasses at high homologous temperatures. Acta Mater., 55:3755–3747, 2007.
  210. J. F. Nye. Some geometrical relations in dislocated crystals. Acta Metall., 1:153–162, 1953.
  211. E. Kr¨oner. Kontinuumstheorie der Versetzungen und Eigenspannungen (in Ger-man). Springer, Berlin, 1958.
  212. M. F. Ashby. The deformation of plastically non-homogeneous materials. Philos. Mag., 21:399–424, 1970.
  213. E. Kr¨oner. Physics of defects, chapter Continuum theory of defects, page 217. North-Holland Publishing Company, Amsterdam, Netherlands, 1981.
  214. B. C. Larson, W. Yang, G. E. Ice, J. G. Swadener, J. D. Budai, and J. Z. Tischler. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature, 415:887–890, 2002.
  215. J.-C. Kuo, S. Zaefferer, Z. Zhao, M. Winning, and D. Raabe. Deformation Behaviour of Aluminium-Bicrystals. Adv. Eng. Mater., 5:563–566, 2003.
  216. S. Zaefferer, S. I. Wright, and D. Raabe. 3D-orientation microscopy in a FIB SEM: a new dimension of microstructure characterisation. Metall. Mater. Trans. A, 39: 374–389, 2008.
  217. M. Kraska, M. Doig, D. Tikhomirov, D. Raabe, and F. Roters. Virtual material testing for stamping simulations based on polycrystal plasticity. Comp. Mater. Sci., in press, 2009.
  218. R. Courant. Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of American Mathematical Society, 49:1–23, 1943.
  219. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, 6th edition, 2005.
  220. O. C. Zienkiewicz, R. L. Taylor, and P. Nithiarasu. The Finite Element Method for Fluid Dynamics. Butterworth-Heinemann, 6th edition, 2005.
  221. G. I. Taylor. The Mechanism of Plastic Deformation of Crystals. Part I.— Theoretical. Proc. Roy. Soc. London A, 145:362–387, 1934.
  222. G. I. Taylor. The Mechanism of Plastic Deformation of Crystals. Part II.— Comparison with Observations. Proc. Roy. Soc. London A, 145:388–404, 1934.
  223. E. Orowan. Zur Krsitallplastizität I.–III. Z. Phys., 89:605–659, 1934. ¨
  224. M. Polanyi. Uber eine Art Gitterst¨orung, die einen Kristall plastisch machen könnte. Z. Phys., 89:660–664, 1934.
  225. S. V. Harren, H. D`eve, and R. J. Asaro. Shear band formation in plane strain compression. Acta Metall., 36:2435–2480, 1988.
  226. S. V. Harren and R. J. Asaro. Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids, 37:191–232, 1989.
  227. L. S. T´oth and P. Van Houtte. Discretization techniques for orientation distribution functions. Texture Microstruct., 19:229–244, 1992.
  228. P. Eisenlohr and F. Roters. Selecting a set of discrete orientations for accurate texture reconstruction. Comp. Mater. Sci., 42:670–678, 2008
  229. N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson. Strain gradient plasticity: Theory and experiment. Acta Metall. Mater., 42:475–487, 1994.
  230. N. A. Fleck and J. W. Hutchinson. Advances in Applied Mechanics, volume 33, chapter Strain gradient plasticity, pages 1825–1857. Academic Press, New York, 1997.
  231. W. D. Nix and H. Gao. Indentation size effects in crystalline materials: a law of strain gradient plasticity. J. Mech. Phys. Solids, 46:411–425, 1998.
  232. H. Gao and Y. Huang. Geometrically necessary dislocation and size-dependent plasticity. Scripta Mater., 48(2):113–118, 2003.
  233. A. Ma, F. Roters, and D. Raabe. Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations. Int. J. Solids Struct., 43:7287–7303, 2006.
  234. A. S. J. Suiker and S. Turteltaub. Computational modelling of plasticity induced by martensitic phase transformations. Int. J. Numer. Meth. Eng., 63:1655–1693, 2005.
  235. B. A. Bilby. Progress in Solid Mechanics, volume 1, chapter Continuum Distributions of Dislocations, page 331. North-Holland Publishing Company, Amsterdam, Netherlands, 1960.
  236. B. A. Bilby, L. R. T. Gardner, and E. Smith. The relation between dislocation density and stress. Acta Metall., 6:29–33, 1958.
  237. E. Kröner. Allgemeine Kontinuumstheorie der, Versetzungen und Eigenspannungen. Archive for Rational Mechanics and Analysis, 4:273–334, 1959.
  238. E. H. Lee and D. T. Liu. Finite-Strain Elastic-Plastic Theory with Application to Plane-Wave Analysis. J. Appl. Phys., 38:19–27, 1967.
  239. B. A. Bilby, R. Bullough, and E. Smith. Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. Roy. Soc. London A, 231:263–273, 1955.
  240. J. W. Hutchinson. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. Roy. Soc. London A, 348:1001–127, 1976.
  241. E. Voce. The relationship between stress and strain for homogeneous deformation. J. Inst. Metals, 74:537–562, 1948.
  242. U. F. Kocks. Laws of work-hardening and low temperature creep. J. Eng. Mater. Tech., 98:76–83, 1976.
  243. U. F. Kocks. A statistical theory of flow stress and work-hardening. Philos. Mag., 13:541, 1966.
  244. H. Mecking and U. F. Kocks. Kinetics of flow and strain hardening. Acta Metall., 29:1865–1875, 1986.
  245. E. O. Hall. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. B, 64:747, 1951.
  246. N. J. Petch. The Cleavage Strength of Polycrystals. J. Iron Steel Inst., page 25, 1953.
  247. S. Nemat-Nasser, L. Ni, and T. Okinaka. A constitutive model for fcc crystals with application to polycrystalline OFHC copper. Mech. Mater., 30(4):325–341, 1998.
  248. Z. Shen, R. H. Wagoner, and W. A. T. Clark. Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scripta Metall., 20(6):921–926, 1986.
  249. W. A. T. Clark, R. H. Wagoner, Z. Y. Shen, T. C. Lee, I. M. Robertson, and H. K. Birnbaum. On the criteria for slip transmission across interfaces in polycrystals. Scripta Metall. Mater., 26(2):203–206, 1992.
  250. J. P. Jacques, J. Ladri`ere, and F. Delannay. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall. Mater. Trans. A, 32:2759–2768, 2001.
  251. G. W. Greenwood and R. H. Johnson. The deformation of metals under small stresses during phase transformation. Proc. Roy. Soc. London A, 283:403, 1965.
  252. F. D. Fischer, G. Reisner, E. A. Werner, K. Tanaka, G. Cailletaud, and T. Antretter. A new view on transformation-induced plasticity (TRIP). Int. J. Plasticity, 16:723– 748, 2000.
  253. J. R. Patel and M. Cohen. Criterion for the action of applied stress in martensitic transformation. Acta Metall., 1(5):531–538, 1953.
  254. M. S. Wechsler, D. E. Lieberman, and T. A. Read. On the theory of the formation of martensite. Appl. Phys. A-Mater., 197(11):1503–1515, 1953.
  255. J. M. Ball and R. D. James. Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. An., 100(1):13–52, 1987.
  256. G. B. Olson and M. Cohen. Kinetics of strain-induced martensitic nucleation. Metall. Trans. A, 6(4):791–795, 1975.
  257. R. G. Stringfellow, D. M. Parks, and G. B. Olson. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metall. Mater., 40(7):1703–1716, 1992.
  258. J. B. Leblond, G. Mottet, and J. C. Devaux. A theoretical and numerical approach to the plastic behaviour of steels during phase-transformation -I. Derivation of general relations. J. Mech. Phys. Solids, 34:395–409, 1986.
  259. J. B. Leblond, G. Mottet, and J. C. Devaux. A theoretical and numerical approach to the plastic behaviour of steels during phase-transformation -II. Study of classical plasticity for ideal-plastic phases. J. Mech. Phys. Solids, 34:411–432, 1986.
  260. A. Bhattacharyya and G. J. Weng. An energy criterion for the stress-induced martensitic transformation in a ductile system. J. Mech. Phys. Solids, 42:1699– 1724, 1994.
  261. V. I. Levitas, A. V. Idesman, and E. Stein. Shape memory alloys: Micromechanical modeling and numerical analysis of structures. J. Intel. Mat. Syst. Str., 10:983–996, 1999.
  262. V. I. Levitas, A. V. Idesman, and G. B. Olson. Continuum modeling of straininduced martensitic transformation at shear-band intersections. Acta Mater., 47(1): 219–233, 1999.
  263. S. Turteltaub and A. S. J. Suiker. A multi-scale thermomechanical model for cubic to tetragonal martensitic phase transformations. Int. J. Solids Struct., 43:4509–4545, 2006.
  264. D. Hull and D. J. Bacon. Introduction to Dislocations. Butterworth-Heinmann, 4th edition, 2001.
  265. M. S. Duesbery and V. Vitek. Plastic anisotropy in BCC transition metals. Acta Mater., 46(5):1481–1492, 1998.
  266. J. L. Bassani, K. Ito, and V. Vitek. Complex macroscopic plastic flow arising from non-planar dislocation core structures. Mat. Sci. Eng. A, 319–321:97–101, 2001.
  267. V. Vitek, M. Mrovec, R. Gr¨oger, J. L. Bassani, V.Racherla, and L. Yin. Effects of non-glide stresses on the plastic flow of single and polycrystals of molybdenum. Mat. Sci. Eng. A, 387–389:138–142, 2004.
  268. D. D. Tjahjanto, S. Turteltaub, A. S. J. Suiker, and S. van der Zwaag. Modelling of the effects of grain orientation on transformation-induced plasticity in multiphase steels. Modelling Simul. Mater. Sci. Eng., 14:617–636, 2006.
  269. J. P. Hirth and J. Lothe. Theory of Dislocations. Krieger Publishing Company–John Wiley & Sons, Ltd., 2nd edition, 1982.
  270. P. Van Houtte. Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall., 26:591–604, 1978.
  271. J. W. Christian and S. Mahajan. Deformation twinning. Progress in Materials Science, 39(1–2):1–157, 1995.
  272. G. F. Bolling and R. H. Richman. Continual mechanical twinning : Part I: Formal description. Acta Metall., 13:709–745, 1965.
  273. W. Köster and M. O. Speidel. Der Einfluss der Temperatur und der Korngr¨oße auf die ausgeprägte. Streckgrenze von Kupferlegierungen. Z. Metallkd., 9:1050, 1965.
  274. S. Mahajan and D. F. Williams. Deformation Twinning in Metals and Alloys. Int. Metal. Rev., 18:43, 1973.
  275. J. A. Venables. Deformation Twinning. Reed-Hill, R. E., Hirth, J. P. and Rogers, H. C., Gordon & Breach, New York, 1964.
  276. J. Harding. The Yield and Fracture Behaviour of High-Purity Iron Single Crystals at High Rates Crystals at High Rates of Strain. Proc. Roy. Soc. London A, 299: 464–490, 1967.
  277. J. Harding. Yield and Fracture of High-Purity Iron Single Crystals Under Repeated Tensile Impact Loading. Mem. Sci. Rev. Met., 65:245, 1968.
  278. M. Hokka, V.-T. Kuokkala, S. Curtze, T. Vuoristo, and M. Apostol. Characterization of strain rate and temperature dependent mechanical behavior of TWIP steels. J. Phys. IV, 134:1301–1306, 2006.
  279. R. Armstrong and P. J. Worthington. Metallurgical Effects at High Strain Rates. Rohde, R. W., Butcher, B. M., Holland, J. R. and Karnes, C. H., Plenum Press, New York, 1973.
  280. O. Vöhringer. Einsatzpannung für mechanishe Zwillingsbildung bei αKupferlegierungen. Z. Metallkd., 67:518–524, 1976.
  281. S. G. Song and G. T. III Gray. Influence of Temperature and Strain Rate on Slip and Twinning Behavior of Zr. Metall. Mater. Trans. A, 26:2665–2675, 1995.
  282. M. A. Meyers, U. R. Andrade, and A. H. Chokshi. Effect of grain size on the highstrain, high-strain-rate behavior of copper. Metall. Mater. Trans. A, 26:2881–2893, 1995.
  283. E. El-Dana, S. R. Kalidindi, and R. D. Doherty. Influence of grain size and stacking fault energy on deformation twinning in FCC metals. Metall. Mater. Trans. A, 30: 1223, 1998.
  284. L. R´emy. Maclage et transformation martensitique CFC-HC induite par d´eformation plastique dans les alliages aust´eniques `energie de d´efaut d’empilemant des a basse ´syt`emes Co-Ni-Cr-Mo et Fe-Mn-Cr-C. PhD thesis, ENSMP, 1975.
  285. I. Karaman, H. Sehitoglu, K. Gall, and Y. I. Chumlyakov. On the Deformation Mechanisms in Single Crystal Hadfield Manganese Steels. Scripta Mater., 38:1009– 1015, 1998.
  286. I. Karaman, H. Sehitoglu, K. Gall, Y. I. Chumlyakov, , and H. J. Maier. Deformation of a single crystal Hadfield steel by twinning and slip. Acta Mater., 48:1345–1359, 2000.
  287. V. Doquet. Twinning and multiaxial cyclic plasticity of a low stacking-fault-energy f.c.c alloy. Acta Metall. Mater., 41:2451–2459, 1993.
  288. S. M. Schlögl and F. D. Fischer. The role of slip and twinning in the deformation behaviour of polysynthetically twinned crystals of TiAl: A micromechanical model. Philos. Mag. A, 75:621–636, 1997
  289. H. Mecking, C. Hartig, and U. F. Kocks. Deformation modes in gamma-TiAl as derived from the single crystal yield surface. Acta Mater., 44:1309–1321, 1996.
  290. S. R. Kalidindi. Continuum Scale Simulation of Engineering Materials, chapter A Crystal plasticity Framework for Deformation Twinning, pages 543–560. Wiley-VCH, 2004
  291. L. Meng, P. Yang, Q. Xie, H. Ding, and Z. Tang. Dependence of deformation twinning on grain orientation in compressed high manganese steels. Scripta Mater., 56:931–934, 2007.
  292. A. A. Salem, S. R. Kalidindi, R. D. Doherty, and S. L. Semiatin. Strain hardening due to deformation twinning in α-titanium: Mechanics. Metall. Mater. Trans. A, 37:259–268, 2006.
  293. H. J. Bunge. Texture Analysis in Materials Science. Butterworths, London, 1982.
  294. T. Böhlke, U.-U. Haus, and V. Schulze. Crystallographic texture approximation by quadratic programming. Acta Mater., 54:1359–1368, 2006.
  295. R. J. M. Smit, W. A. M. Brekelmans, and H. E. H. Meijer. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng., 155(1–2):181–192, 1998.
  296. F. Feyel and J. L. Chaboche. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng., 183(3–4):309–330, 2000.
  297. V. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens. An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics, 27 (1):37–48, 2001.
  298. C. Miehe, J. Schotte, and M. Lambrecht. Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J. Mech. Phys. Solids, 50(10):2123–2167, 2002.
  299. H. Moulinec and P. Suquet. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng., 157(1–2):69–94, 1998.
  300. R. A. Lebensohn. N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform. Acta Mater., 49(14):2723–2737, 2001.
  301. A. Reuss. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbeding für Einkristalle. Z. Angew. Math. Mech., 9:49–58, 1929.
  302. W. Voigt. Uber die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wied. Ann., 38:573–587, 1889.
  303. J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. London A, 241:376–396, 1957.
  304. S. Nemat-Nasser and M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam, 2nd edition, 1999.
  305. E. Kröner. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Phys., 151:504–518, 1958.
  306. T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall., 21(5):571–574, 1973.
  307. Y. Benveniste. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater., 6(2):147–157, 1987.
  308. R. Hill. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids, 13(2):89–101, 1965.
  309. R. A. Lebensohn and C. N. Tom´e. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater., 41(9):2611–2624, 1993.
  310. M. Berveiller and A. Zaoui. An extension of the self-consistent scheme to plasticallyflowing polycrystals. J. Mech. Phys. Solids, 26(5–6):325–344, 1978.
  311. R. Masson, M. Bornert, P. Suquet, and A. Zaoui. An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J. Mech. Phys. Solids, 48(6–7):1203–1227, 2000.
  312. I. Doghri and A. Ouaar. Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms. Int. J. Solids Struct., 40(7):1681–1712, 2003.
  313. L. Delannay, I. Doghri, and O. Pierard. Prediction of tension-compression cycles in multiphase steel using a modified incremental mean-field model. Int. J. Solids Struct., 44(22–23):7291–7306, 2007.
  314. P. Van Houtte. On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals. Mat. Sci. Eng., 55 (1):69–77, 1982.
  315. P. Van Houtte. A comprehensive mathematical formulation of an extended Taylor– Bishop–Hill model featuring relaxed constraints, the Renouard–Wintenberger theory and a strain rate sensitivity model. Texture Microstruct., 8–9:313–350, 1988.
  316. H. Honneff and H. Mecking. A method for the determination of the active slip systems and orientation changes during single crystal deformation. In Proceedings of the 5th International Conference on Texture of Materials (ICOTOM-5), Aachen, Springer, Berlin, 1978, Gottstein G. and Lücke K. Eds, p. 265, 1978.
  317. U. F. Kocks and H. Chandra. Slip Geometry in Partially Constrained Deformation. Acta Metall., 30:695–709, 1982.
  318. P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay. Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int. J. Plasticity, 21(3): 589–624, 2005.
  319. M. Crumbach, G. Pomana, P. Wagner, and G. Gottstein. A Taylor Type Deformation Texture Model Considering Grain Interaction and Material Properties. Part I Fundamentals. In Recrystallisation and Grain Growth, Proc. First Joint Conference, Springer, Berlin, pp. 1053–1060, eds. G. Gottstein and D. A. Molodov, 2001.
  320. P. Wagner. Zusammenh¨ange zwischen mikro-und makroskopischen Verformungsinhomogenit¨aten und der Textur. PhD thesis, RWTH Aachen, 1994.
  321. C. Schäfer, J. Song, and G. Gottstein. Modeling of texture evolution in the deformation zone of second-phase particles. Acta Mater., 57:1026–1034, 2009.
  322. J. D. Clayton and D. L. McDowell. Homogenized finite elastoplasticity and damage: theory and computations. Mech. Mater., 36:825–847, 2004.
  323. J. D. Clayton. Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int. J. Solids Struct., 42:4613–4640, 2005.
  324. J. D. Clayton. Dynamic plasticity and fracture in high density polycrystals:constitutive modeling and numerical simulation. J. Mech. Phys. Solids, 53: 261–301, 2005.
  325. E. M. Lehockey and G. Palumbo. On the creep behaviour of grain boundary engineered nickel. Mat. Sci. Eng. A, 237:168– –172, 1997.
  326. P. D. Nicolaou and S. L. Semiatin. An analysis of the effect of continuous nucleation and coalescence on cavitation during hot tension testing. Acta Mater., 48:3441–3450, 2000.
  327. P. D. Nicolaou and S. L. Semiatin. Hybrid micromechanical -macroscopic model for the analysis of tensile behavior of cavitating materials. Metall. Mater. Trans. A, 34, 2003.
  328. M. F. Horstemeyer, S. Ramaswamy, and M. Negrete. Using a micromechanical .finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase. Mech. Mater., 35: 675–687, 2003.
  329. T. Pardoen, D. Dumont, A. Deschamps, and Y. Brechet. Grain Boundary versus transgranular ductile failure. J. Mech. Phys. Solids, 51:637, 2003.
  330. D. S. Wilkinson, W. Pompe, and M. Oeschner. Modeling the mechanical behavior of heterogeneous multi-phase materials. Progress in Materials Science, 46:379–405, 2001.
  331. J. Lemaitre and J.-L. Chaboche. Mechanics of Solid Materials. Cambridge University Press, Cambridge, 2nd edition, 1998.
  332. B. Luccioni and S. Oller. A directional damage model. Comput. Methods Appl. Mech. Eng., 192:1119–1145, 2003.
  333. A. Menzel, M. Ekh, K. Runesson, and P. Steinmann. A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage. Int. J. Plasticity, 21:397–434, 2005.
  334. G. Z. Voyiadjis and R. J. Dorgan. Framework using functional forms of hardening internal state variables in modeling elasto-plastic-damage behavior. Int. J. Plasticity, 23:1826–1859, 2007.
  335. F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. H. Choi, and E. Chu. Plane stress yield function for aluminum alloy sheets-Part I: Theory. Int. J. Plasticity, 19:1297–1319, 2002.
  336. A. K. Vasudevan and R. D. Doherty. Grain boundary ductile fracture in precipitation hardened aluminum alloys. Acta Metall., 35:1193–1219, 1987.
  337. S. Suresh, A. K. Vasudevan, M. Tosten, and P. R. Howell. Microscopic and macroscopic aspects of fracture in lithium containing aluminum alloys. Acta Metall., 35: 25–46, 1987.
  338. J. Tsang, J. Beddoes, and A. Merati. Detection methods for nucleation and short fatigue cracks in 2025-T3 aluminum alloy. In Aerospace Materials and Manufacturing: Development, Testing, and Life Cycle Issues, MetSoc/CIM, pages 275–87, 2004.
  339. I. Simonovski, K. F. Nilsson, and L. Cizelj. The influence of crystallographic orientation on crack tip displacements of microstructurally small, kinked crack crossing the grain boundary. Comp. Mater. Sci., 39:817–828, 2007.
  340. F. P. E. Dunne, A. J. Wilkinson, and R. Allen. Experimental and computational studies of low cycle fatigue crack nuclation in a polycrystal. Int. J. Plasticity, 23: 273–295, 2007.
  341. C. Thorning, M. A. J. Somers, and J. A. Wert. Grain interaction effects in polycrystalline Cu. Mat. Sci. Eng. A, 397:215–228, 2005.
  342. A. Tatschl and O. Kolednik. On the experimental characterization of crystal plasticity in polycrystals. Mat. Sci. Eng. A, 342:152, 2003.
  343. K.-S. Cheong and E. P. Busso. Effects of lattice misorientations on strain heterogeneities in FCC polycrystals. J. Mech. Phys. Solids, 54:671–689, 2006.
  344. S. Hao, W. K. Liu, B. Moran, F. Vernerey, and G. B. Olson. Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comput. Methods Appl. Mech. Eng., 193:1865–1908, 2004.
  345. P. R. Dawson, D. P. Mika, and N. R. Barton. Finite element modeling of lattice misorientations in aluminum polycrystals. Scripta Mater., 47:713–717, 2002.
  346. S. R. Kalidindi and L. Anand. Large deformation simple compression of a copper single crystal. Metall. Trans. A, 24:989–992, 1993.
  347. S. Hao, B. Moran, W. K. Liu, and G. B. Olson. A hierarchical multi-physics model for design of high toughness steels. J. Computer-Aided Materials Design, 10:99–142, 2003.
  348. W. K. Liu, E. G. Karpov, S. Zhang, and H. S. Park. An introduction to computational nanomechanics and materials. Comput. Methods Appl. Mech. Eng., 193: 529–1578, 2004.
  349. G. Z. Voyiadjis, R. K. Abu Al-Rub, and A. N. Palazotto. Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory. Int. J. Plasticity, 20:981–1038, 2004.
  350. T. E. Buchheit and G. W. Wellmanand C. C. Battaile. Investigating the limits of polycrystal plasticity modeling. Int. J. Plasticity, 21:221–249, 2005.
  351. T. Watanabe. An Approach to Grain-Boundary Design for Strong and Ductile Polycrystals. Res Mechanica, 11:47–84, 1984.
  352. G. Palumbo, E. M. Lehockey, and P. Lin. Applications for grain boundary engineered materials. JOM, 50:40–43, 1998.
  353. T. Watanabe and S. Tsurekawa. Toughening of brittle materials by grain boundary engineering. Mat. Sci. Eng. A, 387–389:447–455, 2004.
  354. V. Randle. Twinning-related grain boundary engineering. Acta Mater., 52:4067–4081, 2004.
  355. C. A. Schuh, M. Kumar, and W. E. King. Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater., 51:687–700, 2003.
  356. E. S. McGarrity, P. M. Duxbury, and E. A. Holm. Statistical physics of grainboundary engineering. Phys. Rev. E, 71:Art. No. 026102 Part 2, 2005.
  357. H. Kokawa, T. Watanabe, and S. Karashima. Sliding Behavior and Dislocation-Structures in Aluminum Grain-Boundaries. Philos. Mag. A, 44:1239, 1981.
  358. T. Watanabe and S. Tsurekawa. Prediction and control of grain boundary fracture in brittle materials on the basis of the strongest-link theory. Mat. Sci. Forum, 485: 55–62, 2005.
  359. A. Needleman. A Continuum Model for Void Nucleation by Inclusion Debonding. J. Appl. Mech. ASME, 54:525–531, 1987.
  360. X.-P. Xu and A. Needleman. Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids, 42:1397–1434, 1994.
  361. J. J. M. Arata, K. S. Kumar, W. A. Curtin, and A. Needleman. Crack growth across colony boundaries in binary lamellar TiAl. Mat. Sci. Eng. A, 329:532–537, 2002.
  362. P. Lejcek and V. Paidar. Challenges of interfacial classification for grain boundary engineering. Mat. Sci. Tech., 21:393–398, 2005.
  363. K. Kawahara, K. Ibaraki, S. Tsurekawa, and T. Watanabe. Distribution of plane matching boundaries for different types and sharpness of textures. Mat. Sci. Forum, 475–479:3871–3874, 2005.
  364. M. S. Wu, A. A. Nazarov, and K. Zhou. Misorientation dependence of the energy of 1-100symmetrical tilt boundaries in hcp metals: prediction by the disclinationstructural unit model. Philos. Mag., 84:785–806, 2004.
  365. A. Singh and A. H. King. Tables of Coincidence Orientations for Ordered Tetragonal L lo Alloys for a Range of Axial Ratios. Acta Cryst. B, 49:266–272, 1993.
  366. J.D. Livingston and B. Chalmers. Multiple Slip In Bicrystal Deformation. Acta Metall., 5:322, 1957.
  367. E. Werner and W. Prantl. Slip transfer across grain and phase boundaries. Acta Metall. Mater., 38:3231–3242, 1990.
  368. M. de Koning, R. J. Kurtz, V. V. Bulatov, C. H. Henager, R. G. Hoagland, W. Cai, and M. Nomura. Modeling of dislocation-grain boundary interactions in FCC metals. J. Nucl. Mater., 323:281–289, 2003.
  369. J. Luster and M. A. Morris. Compatibility Of Deformation In Two-Phase Ti-Al Alloys: Dependence On Microstructure And Orientation Relationships. Metall. Mater. Trans. A, 26:1745, 1995.
  370. M. A. Gibson and C. T. Forwood. Slip transfer of deformation twins in duplex gamma -based Ti-Al alloys. III. Transfer across general large-angle gamma-gamma grain boundaries. Philos. Mag. A, 82:1381, 2002.
  371. W. Bollmann. The Stress-Field of a Model Triple-Line Disclination. Mat. Sci. Eng., 136:1–7, 1991.
  372. V. Randle. The Influence Of Grain Junctions And Boundaries On Superplastic Deformation. Acta Metall. Mater., 43:1741–1749, 1995.
  373. M. S. Wu and M. D. He. Prediction of crack statistics in a random polycrystal damaged by the pile-ups of extrinsic grain-boundary dislocations. Philos. Mag., 79:271–292, 1999.
  374. S. Tsurekawa, S. Kokubun, and T. Watanabe. Effect of grain boundary microstructures of brittle fracture in polycrystalline molybdenum. Mat. Sci. Forum, 304-3: 687–692, 1999.
  375. S. Kobayashi, S. Tsurekawa, and T. Watanabe. Grain boundary hardening and triple junction hardening in polycrystalline molybdenum. Acta Mater., 53:1051– 1057, 2005.
  376. L. C. Lim and R. Raj. Continuity of Slip Screw and Mixed-Crystal Dislocations Across Bicrystals of Nickel At 573-K. Acta Metall., 33:1577, 1985.
  377. M. G. Wang and A. H. W. Ngan. Indentation strain burst phenomenon induced by grain boundaries in niobium. J. Mat. Res., 19:2478–2486, 2004.
  378. S. Sun, B. L. Adams, and W. E. King. Observations of lattice curvature near the interface of a deformed aluminium bicrystal. Philos. Mag. A, 80:9–25, 2000.
  379. W. M. Ashmawi and M. A. Zikry. Grain boundary effects and void porosity evolution. Mech. Mater., 35:537, 2003.
  380. B. A. Simkin and M. A. Crimpand T. R. Bieler. A Factor to Predict Microcrack Nucleation at γ-γ Grain Boundaries in TiAl. Scripta Mater., 49:149–154, 2003.
  381. B. A. Simkin, B. C. Ng, T. R. Bieler, M. A. Crimp, and D. E. Mason. Orientation Determination and Defect Analsysis in the Near-Cubic Intermetallic γ-TiAl using SACP, ECCI, and EBSD. Intermetallics, 11:215–223, 2003.
  382. B. C. Ng, T. R. Bieler, M. A. Crimp, and D. E. Mason. Materials Damage Prognosis, chapter Prediction of crack paths based upon detailed microstructure characterization in a near-γ TiAl Alloy, pages 307–314. TMS, Warrendale, PA, 2005.
  383. T. R. Bieler, A. Fallahi, B. C. Ng, D. Kumar, M. A. Crimp, B. A. Simkin, A. Zamiri, F. Pourboghrat, and D. E. Mason. Fracture Initiation/Propagation Parameters for Duplex TiAl Grain Boundaries Based on Twinning, Slip, Crystal Orientation, and Boundary Misorientation. Intermetallics, 13:979–984, 2005.
  384. C. J. Boehlert, S. C. Longanbach, and T. R. Bieler. The effect of thermomechanical processing on the creep behavior of Udimet Alloy 188. Philos. Mag. A, 88:641–664, 2008.
  385. V. Sinha, M. J. Spowart, M. J. Mills, and J. C. Williams. Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: crystallographic orientation and size effects. Metall. Mater. Trans. A, 37:1507–1518, 2006.
  386. T. R. Bieler, P. D. Nicolaou, and S. L. Semiatin. An experimental and theoretical investigation of the effect of local colony orientations and misorientation on cavitation during hot working of Ti-6Al-4V. Metall. Mater. Trans. A, 36:129–140, 2005.
  387. T. R. Bieler, R. L. Goetz, and S. L. Semiatin. Anisotropic plasticity and cavity growth during upset forging of Ti-6Al-4V. Mat. Sci. Eng. A, 405:201–213, 2005.
  388. MSC.Marc user’s manual 2007, User Subroutines and Special Routines, Volume D. MSC, 2007.
  389. Abaqus User Subroutines Reference Manual Version 6.7. Dassault Syst`emes, 2007.
  390. G. B. Sarma and T. Zacharia. Integration algorithm for modeling the elastoviscoplastic response of polycrystalline materials. J. Mech. Phys. Solids, 47:1219– 1238, 1999.
  391. A. M. Maniatty, P. R. Dawson, and Y.-S. Lee. A time integration algorithm for elasto-viscoplastic cubic crystals applied to modelling polychrystalline deformation. Int. J. Numer. Meth. Eng., 35:1565–1588, 1992.
  392. A. M. Cuiti˜no and M. Ortiz. Computational modelling of single crystals. Modelling Simul. Mater. Sci. Eng., 1:225–263, 1992.
  393. C.-S. Han, A. Ma, F. Roters, and D. Raabe. A Finite Element approach with patch projection for strain gradient plasticity formulations. Int. J. Plasticity, 23:690–710, 2007.
  394. S. F. Nielsen, E. M. Lauridsen, D. Juul Jensen, and H. F. Poulsen. A threedimensional X-ray diffraction microscope for deformation studies of polycrystals. Mat. Sci. Eng. A, 319–321:179–181, 2001.
  395. J. Konrad, S. Zaefferer, and D. Raabe. Investigation of orientation gradients around a hard Laves particle in a warm rolled Fe3Al-based alloy by a 3D EBSD-FIB technique. Acta Mater., 54:1369–1380, 2006.
  396. A. Bastos, S. Zaefferer, and D. Raabe. 3-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited CoNi films. J. Microscopy, 230:487–498, 2008.
  397. M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix. Sample dimensions influence strength and crystal plasticity. Science, 305:986–989, 2004.
  398. J. R. Greer, W. C. Oliver, and W. D. Nix. Size dependence of mechanical properties of gold at the micronscale in the absence of strain gradients. Acta Mater., 2005: 1821–1830, 53.
  399. D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy. Size affected single slip behavior of pure Ni microcrystals. Acta Mater., 53:4065–4077, 2005.
  400. D. Kiener, R. Pippan, C. Motz, and H. Kreuzer. Microstructural evolution of the deformed volume beneath microindents in tungsten and copper. Acta Mater., 54: 2801–2811, 2006.
  401. Z. Zhao, W. Mao, and D. Raabe. Influence of Grain Neighborhood on FCC Texture Simulation. Mat. Sci. Forum, 408–412:281–286, 2002
  402. D. Raabe, Z. Zhao, and F. Roters. Materials Science Forum. Mat. Sci. Forum, 408–412:275–280, 2002.
  403. M. Hölscher, D. Raabe, and K. L¨ucke. Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals. Acta Metall., 42:879–886, 1994.
  404. A. Ma, F. Roters, and D. Raabe. A dislocation density based consitutive law for BCC materials in crystal plasticity FEM. Comp. Mater. Sci., 39:91–95, 2007.
  405. F. Roters, D. Raabe, and G. Gottstein. Work hardening in heterogeneous alloys -a microstructural approach based on three internal state variables. Acta Mater., 48: 4181–4189, 2000.
  406. J.-C. Kuo. Mikrostrukturmechanik von Bikristallen mit Kippkorngrenzen. PhD thesis, RWTH Aachen, 2004.
  407. D. Raabe. Introduction of a scaleable 3D cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena. Philos. Mag. A, 79:2339–2358, 1999.
  408. D. Raabe. Mesoscale simulation of recrystallization textures and microstructures. Adv. Eng. Mater., 3:745–752, 2001.
  409. S. O. Kruijver, L. Zhao, J. Sietsma, S. E. Offerman, N. H. van Dijk, E. M. Lauridsen, L. Margulies, S. Grigull, H. F. Poulsen, and S. van der Zwaag. In situ observation on the mechanical stability of austenite in TRIP-steel. J. Phys. IV, 104:499–502, 2003.
  410. E. C. Oliver, P. J. Whithers, M .R. Daymond, S. Ueta, and T. Mori. Neutrondiffraction study of stress-induced martensitic transformation in TRIP steel. Appl. Phys. A-Mater. Sci. Proc., 74:S1143–S1145, 2002.
  411. M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Computer Physics Communications, 107: 187–222, 1997.
  412. R. Hill. The elastic behavior of a crystalline aggregate. Proc. Roy. Soc. London A, 65:349–354, 1952.
  413. A. V. Hershey. The elasticity of an isotropic aggregate of anisotropic cubic crystals. J. Appl. Mech. ASME, 21:236–240, 1954.
  414. W. A. Counts, M. Friak, C. C. Battaile, D. Raabe, and J. Neugebauer. A comparison of polycrystalline elastic constants computed by analytic homogenization schemes and FEM. Phys. Status Solidi B, 245:2644–2649, 2008.
  415. D. Ma, M. Friak, J. Neugebauer, D. Raabe, and F. Roters. Multiscale simulation of polycrystal mechanics of textured β-Ti alloys using ab initio and crystal-based finite element methods. Phys. Status Solidi B, 245:2642–2648, 2008.
  416. D. Raabe, B. Sander, M. Friak, D. Ma, and J. Neugebauer. Theory–guided bottomup design of beta–titanium alloys as biomaterials based on first principles calculations: theory and experiments. Acta Mater., 55:4475–4487, 2007.
  417. D. Raabe. Simulation of rolling textures of bcc metals under consideration of grain interactions and 110, 112 and 123 slip planes. Mat. Sci. Eng. A, 197:31–37, 1995.
  418. D. Raabe. Investigation of contribution of 123 slip planes to development of rolling textures in bcc metals by use of Taylor models. Mat. Sci. Tech., 11:455–460, 1995.
  419. D. Raabe and K. L¨ucke. Textures of ferritic stainless steels. Mat. Sci. Tech., 9: 302–312, 1993.
  420. A. Fedosseev and D. Raabe. Application of the method of superposition of harmonic currents for the simulation of inhomogeneous deformation during hot rolling of FeCr. Scripta Metall., 30:1–6, 1994.
  421. R. Hill. A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London A, 193:281–297, 1948.
  422. S. Müller. Variational models for microstructure and phase transitions. Springer Lecture Notes in Mathematics, C.I.M.E. Lecture Notes, Lectures at the C.I.M.E. summer school on calculus of variations and geometric evolutiion problems, Cetraro, eds. S. Hildebrandt and M. Struwe, 2:85–210, 1996.
  423. M. Ortiz and E. A. Repetto. Non-convex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids, 47:397–462, 1999.
  424. K. Bhattacharya. Microstructure of Martensite. Oxford University Press, 2003.
  425. S. Aubry and M. Ortiz. The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. Roy. Soc. London A, 459: 3131–3158, 2003.
  426. S. Conti, P. Hauret, and M. Ortiz. Concurrent multiscale computing of deformation microstructure by relaxation and local enrichment with application to single-crystal plasticity. Multiscale Modeling and Simulation, 6:135–157, 2007.
  427. O. Dmitrieva, P. W. Dondl, S. Müller, and D. Raabe. Lamination microstructure in shear deformed copper single crystals. Acta Mater., 57:3439–3449, 2009.
  428. T. Böhlke, G. Risy, and A. Bertram. A texture component model for anisotropic polycrystal plasticity. Comp. Mater. Sci., 32:284–293, 2005.
  429. P. Van Houtte, L. Delannay, and I. Samajdar. Quantitative prediction of cold rolling textures in low-carbon steel by means of the LAMEL model. Texture Microstruct., 31:109–149, 1999.
  430. P. Eisenlohr, D. D. Tjahjanto, T. Hochrainer, F. Roters, and D. Raabe. Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes. Int. J. Materials Research, 4:500–509, 2009.
  431. C. Fressengeas, A.J. Beaudoin, M. Lebyodkin, L.P. Kubin, and Y. Estrin. Dynamic strain aging: A coupled dislocation -solute dynamic model. Mat. Sci. Eng. A, 400–401:226–230, 2005.
  432. H. C. Huang and H Van Swygenhoven. Atomistic Simulations of Mechanics of Nanostructures. MRS BULLETIN, 34:160–162, 2009.
  433. W. A. Counts, M. Friak, D. Raabe, and J. Neugebauer. Using ab intio calculations in designing bcc Mg-Li alloys for ultra light-weight applications. Acta Mater., 57: 69–76, 2009.
  434. M. Fri´ak, W. A. Counts, D. Raabe, and J. Neugebauer. Error -propagation in multiscale approaches to the elasticity of polycrystals. Phys. Status Solidi A, page submitted, 2008.
  435. R. A. Lebensohn, R. Brenner, O. Castelnau, and A. D. Rollett. Orientation imagebased micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater., 56:3914–3926, 2008.
  436. A. Molinari, G. R. Canova, and S. Ahzi. A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall., 35(12):2983–2994, 1987.
  437. Y. Liu, P. Gilormini, and P. Ponte Casta˜neda. Variational self-consistent estimates for texture evolution in viscoplastic polycrystals. Acta Mater., 51:5425–5437, 2003.
  438. S. R. Kalidindi, H. K. Duvvuru, and M. Knezevic. Spectral calibration of crystal plasticity models. Acta Mater., 54:1795–1804, 2006.
  439. S. R. Kalidindi, M. Binci, D. Fullwood, and B. L. Adams. Elastic properties closures using second-order homogenization theories: Case studies in composites of two isotropic constituents. Acta Mater., 54:3117–3126, 2006.
  440. J. C. Michel, H. Moulinec, and P. Suquet. Effective properties of composite materials with periodic microstructure: A computational approach. Comput. Methods Appl. Mech. Eng., 172:109–143, 1999.
  441. X. Wu, G. Proust, M. Knezevic, and S. R. Kalidindi. Elastic-plastic property closures for hexagonal close-packed polycrystalline metals using first-order bounding theories. Acta Mater., 55:2729–2737, 2007.
Go to Editor View