Li, X.; Shang, C.; Ma, X.; Gault, B.; Subramanian, S.; Sun, J.; Misra, R. D. K.: Elemental distribution in the martensite–austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel. Scripta Materialia 139, pp. 67 - 70 (2017)
Ma, X.; Langelier, B.; Gault, B.; Subramanian, S.: Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening. Metallurgical and Materials Transactions A 48 (5), pp. 2460 - 2471 (2017)
Peng, Z.; Choi, P.-P.; Gault, B.; Raabe, D.: Evaluation of analysis conditions for laser-pulsed atom probe tomography: example of cemented tungsten carbide. Microscopy and Microanalysis 23 (2), pp. 431 - 442 (2017)
Koprek, A.; Cojocaru-Mirédin, O.; Würz, R.; Freysoldt, C.; Gault, B.; Raabe, D.: Cd and Impurity Redistribution at the CdS/CIGS Interface After Annealing of CIGS-Based Solar Cells Resolved by Atom Probe Tomography. IEEE Journal of Photovoltaics 7 (1), 7762819, pp. 313 - 321 (2017)
Cairney, J. M.; Gault, B.; Larson, D. J.: Recognizing 60 years of achievements in field emission and atomic scale microscopy: Reflections on the International Field Emission Society. Materials Today 19 (4), pp. 182 - 183 (2016)
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.