von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Atomistic study of the Hydrogen enhanced local plasticity (HELP) mechanism. ADIS 2010, Mechanical Properties, Ringberg, Germany (2010)
Himmerlich, M.; Lorenz, P.; Lymperakis, L.; Gutt, R.; Neugebauer, J.; Krischok, S.: GaN(0001) Surface States: A Comparison Between Photoelectron Spectroscopy and Density Functional Theory. International Workshop on Nitride Semiconductors, Tampa, Florida, USA (2010)
Lymperakis, L.; Neugebauer, J.: Ab initio Based Growth Simulations of III-Nitride Nanowires. International Workshop on Nitride Semiconductors, Tampa, Florida, USA (2010)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Embrittlement in metals: An atomistic study of the Hydrogen enhanced local plasticity (HELP) mechanism. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Lymperakis, L.; Neugebauer, J.: Ab-initio based growth simulations of III-Nitride nanowires. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H.; Neugebauer, J.; Raabe, D.: Extremal stiffness of crustacean cuticle through hierarchical optimization: Theory, modeling, and experiment. 3rd International Conference on Mechanics of Biomaterials & Tissues, multiscale modeling of tissue mechanical properties, Clearwater Beach, FL, USA (2009)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Understanding embrittlement in metals: A multiscale study of the Hydrogen-enhanced local plasticity mechanism. Materials Research Society (MRS) Fall meeting, Boston, MA, USA (2009)
Lymperakis, L.; Neugebauer, J.: Adatom Kinetics, Thermodynamics, and Si Incorporation on Non-Polar III-Nitride Surfaces: Implications on Nanowire Growth. 8th nternational Conference on Nitride Semiconductors, Jeju Island, South Korea (2009)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.