Frommeyer, G.; Jiménez, J. A.: Structural Superplasticity at Higher Strain Rates of Hypereutectoid Fe-5.5Al-1Sn-1Cr-1.3C Steel. Metallurgical and Materials Transaction 36 A, pp. 295 - 300 (2005)
Gnauk, J.; Wenke, R.; Frommeyer, G.: Macroscopic modeling of solidification processes by performing the generalized enthalpy method. Materials Science and Engineering: A 413-414, pp. 490 - 496 (2005)
Jiménez, J. A.; Carsi, M.; Frommeyer, G.; Knippscheer, S.; Wittig, J.; Ruano, O. A.: The effect of microstructure on the creep behavior of the ti-46al-1Mo-0.2Si alloy. Intermetallics 13, pp. 1021 - 1029 (2005)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Deges, J.; Fischer, R.; Frommeyer, G.; Schneider, A.: Atom probe field ion microscopy investigations on the intermetallic Ni49.5Al49.5Re1 alloy. Surface and Interface Analysis 36, pp. 533 - 539 (2004)
Rablbauer, R.; Fischer, R.; Frommeyer, G.: Mechnical properties of NiAl–Cr alloys in relation to microstructure and atomic defects. Zeitschrift für Metallkunde 95 (6), pp. 525 - 534 (2004)
Fischer, R.; Frommeyer, G.; Schneider, A.: APFIM investigations on site preferences, superdislocations, and antiphase boundaries in NiAl(Cr) with B2 superlattice structure. Materials Science and Engineering A 353, pp. 87 - 91 (2003)
Frommeyer, G.; Brüx, U.; Neumann, P.: Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes. Iron and Steel Institue of Japan International Vol. 43 (3), pp. 438 - 446 (2003)
Frommeyer, G.; Hofmann, H.; Löhr, J.: Structural Superplasticity at High Strain Rates of Super Duplex Stainless Steel Fe-25Cr-7Ni-3Mo-0.3N. Steel Research 74 (5), pp. 338 - 344 (2003)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…