Valtiner, M.; Borodin, S.; Grundmeier, G.: Stabilisation and acidic dissolution mechanism of single crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED. Langmuir 24 (10), pp. 5350 - 5358 (2008)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Structure and stability of adhesion promoting aminopropyl phosphonate layers at polymer/aluminium oxide interface. International Journal of Adhesion and Adhesives 28 (1-2), pp. 59 - 70 (2008)
Wielant, J.; Posner, R.; Grundmeier, G.; Terryn, H.: Interface dipoles observed after adsorption of model compounds on iron oxide films: Effect of organic functionality and oxide surface chemistry. Journal of Physical Chemistry C 112, pp. 12951 - 12957 (2008)
Giza, G.; Fink, N.; Grundmeier, G.: Electrochemical studies of the inhibition of the cathodic delamination of organically coated galvanised steel by thin conversion films. Electrochimica Acta 53 (3), pp. 1290 - 1299 (2007)
Itani, H.; Keil, P.; Haake, U.; Lützenkirchen-Hecht, D.; Grundmeier, G.: Formation of Ag nanoparticles in LbL deposited polyelectrolyte films investigated by means of XAS and UV-Vis spectroscopy. HASYLAB Annual Report, p. 581 - 581 (2007)
Valtiner, M.; Borodin, S.; Grundmeier, G.: Preparation and characterisation of hydroxide stabilised ZnO(0001)-Zn-OH surfaces. Physical Chemistry Chemical Physics 9 (19), pp. 2406 - 2412 (2007)
Vlasak, R.; Klueppel, I.; Grundmeier, G.: Combined EIS and FTIR-ATR study of water uptake and diffusion in polymer films on semiconducting electrodes. Electrochim. Acta 52 (28), pp. 8075 - 8080 (2007)
Yliniemi, K.; Ebbinghaus, P.; Keil, P.; Kontturi, K.; Grundmeier, G.: Chemical composition and barrier properties of Ag nanoparticle-containing sol-gel films in oxidizing and reducing low-temperature plasmas. Surface & Coatings Technology 201 (18), pp. 7865 - 7872 (2007)
Wapner, K.; Stratmann, M.; Grundmeier, G.: In-situ Infrared Spectroscopic and Scanning Kelvin Probe Measurements of Water and Ion Transport Kinetics at Polymer/Metal Interfaces. Electrochimica Acta 51 (16), pp. 3303 - 3315 (2006)
Wilson, B. P.; Fink, N.; Grundmeier, G.: Formation of ultra-thin amorphous conversion films on zinc alloy coatings. Part 2: Nucleation, growth and properties of inorganic-organic ultra-thin hybrid films. Electrochimica Acta 51 (15), pp. 3066 - 3075 (2006)
Fink, N.; Wilson, B. P.; Grundmeier, G.: Formation of ultra-thin amorphous conversion films on zinc alloy coatings. Part 1: Composition and reactivity of native oxides on ZnAl(0.05%)-coatings. Electrochimica Acta 51 (14), pp. 2956 - 2963 (2006)
Grundmeier, G.; Rossenbeck, B.; Roschmann, K. J.; Ebbinghaus, P.; Stratmann, M.: Corrosion Protection of Zn-Phosphate Containing Water Borne Dispersion Coatings on Steel. Part 2: Corrosive de-adhesion of model films on iron substrates. Corrosion Science 48 (11), pp. 3716 - 3730 (2006)
Rossenbeck, B.; Ebbinghaus, P.; Stratmann, M.; Grundmeier, G.: Corrosion protection of Zn-phosphate containing water borne dispersion coatings on steel. Part 1: Design and Analysis of Model Water Based Latex Films on Iron Substrates. Corrosion Science 48, pp. 3703 - 3715 (2006)
Sun, G.; Grundmeier, G.: Surface-enhanced Raman spectroscopy of the growth of ultra-thin organosilicon plasma polymers on nanoporous Ag/SiO2-bilayer films. Thin Solid Films 515 (4), pp. 1266 - 1274 (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.