Friák, M.; Sander, B.; Ma, D.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Ab-initio based multi-scale approaches to the elasticity of polycrystals. Mid-term COST conference on Multiscale Modeling of Materials, COST action 19, Brno, Czech Republic (2008)
Friák, M.; Sob, M.; Kim, O.; Ismer, L.; Neugebauer, J.: Ab initio study of the alpha-iron stability limits. Ab initio Description of Iron and Steel: Magnetism and Phase diagrams (ADIS 2008), Ringberg castle, Tegernsee, Germany (2008)
Ismer, L.; Friák, M.; Hickel, T.; Neugebauer, J.: Effect of interstitial carbon on the magnetic structure of fcc iron: Towards an ab-initio simulation of austenitic steels. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Ma, D.; Raabe, D.; Roters, F.; Friák, M.; Neugebauer, J.: Modeling Rolling Textures of Beta Ti Alloys Using Constitutive Data From Ab-initio Simulations. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Sander, B.; Ma, D.; Friak, M.; Neugebauer, J.; Raabe, D.: Texture Evolution during Casting and Hot Rolling of a β-Ti-Nb alloy. 15th International Conference on the Texture of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using Ab Initio to Predict Engineering Parameters in bcc Magnesium-Lithium Alloys. American Physics Society March Meeting, New Orleans, LA, USA (2008)
Kim, O.; Friák, M.; Neugebauer, J.: Ab initio analysis of the carbon solubility limits in various iron phases. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Udyansky, A.; Friák, M.; Neugebauer, J.: An ab-initio study of the phase transitions in the interstitial Fe–C solid solutions. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using Ab Initio to Predict Engineering Parameters in bcc Magnesium-Lithium Alloys. Deutsche Physikalische Gesellschaft Meeting, Berlin, Germany (2008)
Raabe, D.; Roters, F.; Ma, D.; Zaefferer, S.; Friák, M.; Zaafarani, N.: Orientation patterning below indents and Bottom-up mechanical design by using quantum mechanics. Symposium Multiscale Plasticity of Crystalline Materials of the International Union of Theoretical and Applied Mechanics (IUTAM), TU Eindhoven, The Netherlands (2007)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Phase stability and mechanical properties of alloys. International Max-Planck Workshop on Multiscale Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Friák, M.; Neugebauer, J.: First principles study of the anomalous volume-composition effect in Fe-Al and Fe-Ga alloys. 4th Discussion Meeting on the Development of Innovative Iron Aluminum Alloys, Interlaken, Switzerland (2007)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…