Contact

Yasmin Ahmed Salem, M.A.
Yasmin Ahmed Salem
Press and Public Relations Officer

Phone: +49 211 6792 722
Room: 222

Scientific Events

Scientific Events

Month:

5th International Symposium on Computational Mechanics of Polycrystals, CMCn 2016 and first DAMASK User Meeting

5470 1464187375

5th International Symposium on Computational Mechanics of Polycrystals, CMCn 2016 and first DAMASK User Meeting

The Max-Planck-Institut für Eisenforschung in Düsseldorf is organizing the 5th International Symposium on Computational Mechanics of Polycrystals and we would like to invite you and your research colleagues to participate in this event. This symposium is part of a biannual series of symposia that originated from the first joint research group established between the Max Planck Society and the Fraunhofer Society on the Computational Mechanics of Polycrystals. This year the symposium is combined with the first DAMASK User Meeting. DAMASK is the multi-physics simulation software developed at MPIE. If you and your colleagues would like to attend this event, then please register online before July 1st 2016. We emphasize that registration is mandatory and that there are limited places only. Many thanks and hope to see you in Düsseldorf! [more]

MPIE-Colloquium: Tuning Materials Properties Through Extreme Chemical Complexity

6304 1471420013

MPIE-Colloquium: Tuning Materials Properties Through Extreme Chemical Complexity

The development of metallic alloys is arguably one of the oldest of sciences, dating back at least 3,000 years. It is therefore very surprising when a new class of metallic alloys is discovered. High Entropy Alloys (HEA) appear to be such a class furthermore, one that is receiving a great deal of attention in terms of the underlying physics responsible for their formation as well as unusual physical,mechanical and radiation resistance properties that make them candidates for technological applications. The term HEA typically refers to alloys that are comprised of 5, 6, 7… elements, each in in equal proportion, that condense onto simple underlying crystalline lattices but where the different atomic species are distributed randomly on the different sites -face centered cubic (fcc) Cr0.2Mn0.2Fe0.2Co0.2Ni0.2 and body-centered-cubic (bcc) V0.2Nb0.2Mo0.2Ta0.2W0.2 being textbook examples. The naming of these alloys originates from an early conjecture that these unusual systems are stabilized as disordered solid solutions alloys by the high entropy of mixing associated with the large number of components  - a conjecture that has since proved insufficient. In the first part of the presentation I will describe a model that allows us to predict which combinations of N elements taken from the periodic table are most likely to yield a HEA that is based on the results of modern high-throughput ab initio electronic structure computations. In the second part I will broaden the discussion to a wider class of equiatomic fcc concentrated solid solution alloys that is based on the 3d- and 4d-transition metal elements Cr, Mn, Fe, Co, Ni, Pd that range from simple binary alloys, such as Ni0.5Co0.5 and Ni0.5Fe0.5, to the quinary high entropy alloys Cr0.2Mn0.2Fe0.2Co0.2Ni0.2 and Cr0.2Pd0.2Fe0.2Co0.2Ni0.2 themselves. Here I will discuss the role that increasing chemical complexity and disorder has on the underlying electronic structure and the magnetic and transport properties. Finally, I will argue that the manipulation of chemical complexity may offer a new design principle for more radiation tolerant structural materials for energy applications. [more]

A pull-to-bend testing technique for testing Single crystal Silicon

13774 1523872933

A pull-to-bend testing technique for testing Single crystal Silicon

[more]

 
loading content
Go to Editor View