Scientific Events

Location: Max-Planck-Institut für Eisenforschung GmbH, Seminar Room 1

Transport and thermal measurements in the IMW-PPMS Lab

Transport and thermal measurements in the IMW-PPMS Lab
Where: Seminar room 203 [more]

Unraveling the structures of nanocrystalline materials by combining TEM and XRPD

Unraveling the structures of nanocrystalline materials by combining TEM and XRPD
Where: Seminar room 203 [more]

Mechanistic View on Electric Current Induced Kinetic Enhancement and its Various Examples in Materials

Topological Optimization and Textile Manufacturing of 3D Lattice Materials

Topological Optimization and Textile Manufacturing of 3D Lattice Materials
Recent advances in topological optimization methodologies for design of internal material architecture, coupled with the emergence of micro- and nanoscale fabrication processes, 3D imaging, and micron scale testing methodologies, now make it possible to design, fabricate, and characterize lattice materials with unprecedented control. This talk will describe a collaborative effort that employs scalable 3D textile manufacturing, location specific joining, and vapor phase alloying to produce metallic lattices with a wide range of internal architectures, alloy compositions, and mechanical and functional properties. The project involves three length scales. The highest level (component scale) spans centimeters to meters and encompasses gradients in unit cell architecture, porosity, and the creation of sandwich structures. The second level (architectural unit cells) spans tens of microns to millimeters and employs architectural optimization to design the geometry of the braided/woven structure. The smallest level (microstructure) spans nanometers to tens of microns focuses on vapor phase alloying of the wires after textile manufacturing. Topology optimization allows properties to be decoupled and tailored for specific applications. Dramatic enhancements in permeability have been balanced with modest reductions in stiffness and are being used to develop heat exchanger materials with high thermal transport, low impedance, low thermal gradients and high temperature strength. In a parallel effort, architectural designs to maximize both structural resonance and inter-wire friction are also being employed to develop metallic lattices capable of mechanical damping at elevated temperatures. These examples will be used to highlight the benefits to be gained by development of metallic lattice materials with a wide range of tailorable properties. [more]

Use of computational and physical simulation on arc welding heat affected zone microstructure evolution studies

Use of computational and physical simulation on arc welding heat affected zone microstructure evolution studies
The heat affected zone (HAZ) is most commonly the critical part of welding joint and the comprehension of the thermal cycle it suffers during welding and its effects on the final microstructure is fundamental to predict and reduce the properties degradation on that zone. The traditional approach to study the HAZ involves several welding tests varying the principal parameters (voltage, current and welding speed) with subsequent mechanical testing. These welding trials could be very time, material and cost demanding; could not replicate the plant/field true welding conditions (need for small scale/plant no available for research tests) and still may not provide a profound insight on the mechanisms in play as the thermal history would not be evaluated. In this context, it is very interesting to use simulation techniques that have evolve significantly in the last two decades to optimize the research effort. In one side, we have the material computational simulation development, with the use of finite element methods and double ellipsoid heat source model to describe the process (thermometallurgic – mechanical coupling) and methods like CALPHAD, Phase Field and Cellular Automata to describe the microstructure evolution in details. One the other side, there are equipment (Gleeble) capable of applying very rapid and controlled thermo-mechanical cycles (acquired in the computational simulation) to a sample, so to produce physical simulated specimen that represents the HAZ region of interest, enabling more detailed characterization and some mechanical testing in isolated microstructures. This permits some validation of the computational simulation too. Seizing these techniques potential, LNTSold have been developing a series of studies in welding simulation to characterize the HAZ of different steels for oil and gas industry applications. For the X100M API 5L steel pipe, it was simulated on FEA software (Sysweld) the welding process of the pipe (SAW) and the field pipeline assembly (GMAW). The main concern for this steel is the toughness reduction it may be subject to in the HAZ, with possible formation of local brittle zones due to the evolution of very sensible constituents as the martensita-austenite (MA) constituent. From the bibliography reference, the two HAZ critical regions are the coarse grain region and the intercritically re-heated coarse grain region, so it was studied the thermal cycle of these regions with heat input variation in the FEA software. The thermal cycle was then reproduced in Gleeble samples to produce specimens for microscopy (focus on the MA constituent morphology and quantity analysis) and for Charpy impact test, to assess the toughness losses. The results indicate that the MA morphology depends very much on the peak temperature and that its quantity does not seem to control directly the impact resistance. For an AISI 4130 steel connector, it was performed a study with FEA software (Sysweld) and CALPHAD software (JMatPro) of the coarse grain HAZ region of the last welding passes, focusing in the hardness prediction and considering the post-weld heat treatment. A simulated CCT diagram and an experimental one were developed to include phase and hardness prediction in the FEA modelling. Then some heat treatment conditions (temperature x time) were evaluated using CALPHAD, trying to optimize the production time. All welding and the best heat treatment conditions were physically reproduced in Gleeble. The simulated CCT showed initially a good correlation with the experimental one, but the FEA hardness prediction was more precise using the experimental CCT. It was possible to achieve the hardness requirements and even increase the impact resistance with a faster heat treatment with close relation to simulation results. Finally, the welding of a 9% Ni steel pipe with Ni 625 alloy filler metal was also simulated in the FEA software and the different HAZ regions reproduced in Gleeble with dilatometry analysis to study the reversion and retention of austenite, which plays an important role in this steel tenacity. The goal it is also to isolate the microstructure and study its hydrogen embrittlement susceptibility. [more]

Additive Manufacturing, 3D Printing, Porosity and Synchrotron Experiments

Additive Manufacturing, 3D Printing, Porosity and Synchrotron Experiments
3D printing of metals has advanced rapidly in the past decade and is used across a wide range of industry. Many aspects of the technology are considered to be well understood in the sense that validated computer simulations are available. At the microscopic scale, however, more work is required to quantify and understand defect structures, which affect fatigue resistance, for example. Synchrotron-based 3D X-ray computed microtomography (µXCT) was performed at the Advanced Photon Source on a variety of AM samples using both laser (SLM) and electron beam (EBM) powder bed; this showed systematic trends in porosity. Optical and SEM characterization of powders used in additively manufacturing (AM) reveals a variety of morphologies and size distributions. Computer vision (CV), as a subset of machine learning, has been successfully applied to classify different microstructures, including powders. The power of CV is further demonstrated by application to detecting and classifying defects in the spreading in powder bed machines, where the defects often correspond to deficiencies in the printed part. In addition to the printed material, a wide range of powders were measured and invariably exhibited porosity to varying degrees. Outside of incomplete melting and keyholing, porosity in printed parts is inherited from pores or bubbles in the powder. This explanation is reinforced by evidence from simulation and from dynamic x-ray radiography (DXR), also conducted at the APS. DXR has revealed a wide range of phenomena, including void entrapment (from powder particles), keyholes (i.e., vapor holes) and hot cracking. Keyhole depth is linearly related to the excess power over a vaporization threshold. Concurrent diffraction provides information on solidification and phase transformation in, e.g., Ti-6Al-4V and stainless steel. High Energy (x-ray) Diffraction Microscopy (HEDM) experiments are also described that provide data on 3D microstructure and local elastic strain in 3D printed materials, including Ti-6Al-4V and Ti-7Al. The reconstruction of 3D microstructure in Ti-6Al-4V is challenging because of the fine, two-phase lamellar microstructure and the residual stress in the as-built condition. Both the majority hexagonal phase and the minority bcc phase were reconstructed. [more]

In Situ Investigation of the Dynamic Evolution of Materials and Interfaces in Energy Storage Systems

Abstract: In energy storage devices, materials evolve from their initial state due to electrochemical reactions and interfacial instabilities at interfaces. To develop batteries with improved safety, energy density, and lifetime, it is critical to understand transformation mechanisms and degradation processes within these devices. In my research group, multiscale in situ techniques are used to reveal reaction mechanisms and interfacial transformations to guide the development of better batteries and other devices. Our recent work has used in situ transmission electron microscopy (TEM) to reveal phase transformation pathways and mechanical degradation/fracture when sulfide nanocrystals react with different alkali ions (lithium, sodium, and potassium). Surprisingly, mechanical fracture was found to occur only during reaction with lithium, despite larger volume changes during reaction with sodium and potassium. Since fracture is a known capacity decay mechanism in batteries, this result indicates that these materials are useful for the development of novel, high-energy sodium and potassium batteries. In a different study, operando synchrotron X-ray diffraction methods were used to precisely measure crystallographic strain evolution in battery electrode materials; this technique enables measurements beyond what is possible with TEM. In the final portion of the presentation, in situ X-ray photoelectron spectroscopy (XPS) experiments that reveal chemical evolution of solid-state interfaces in energy storage and electronic materials will be presented. Overall, this research demonstrates how fundamental understanding of dynamic processes can be used to guide the design and engineering of new materials and devices with high energy density and long lifetime. [more]
Show more
Go to Editor View