Understanding the relationship between recombination activity, grain boundary structure and chemistry in multicrystalline Silicon solar cells

Multicrystalline Silicon (mc-Si) is a common bulk material for photovoltaic due to its inexpensive growth technique. It is known that during growth and cooling, metal impurities from the sidewalls of the ingot accumulate at the grain boundaries (GBs) and locally enhance the recombination activity and therefore reduce the efficiency of the solar cell.

Multicrystalline Silicon (mc-Si) is a common bulk material for photovoltaic due to its inexpensive growth technique. It is known that during growth and cooling, metal impurities from the sidewalls of the ingot accumulate at the grain boundaries (GBs) and locally enhance the recombination activity and therefore reduce the efficiency of the solar cell. This can be seen in several Electron Beam Induced Current (EBIC) experiments [17-19], but so far the chemistry and quantity of the impurities are not well known.

APT is the ideal tool to localize, identify and quantify those impurities at the grain boundaries at the atomic scale. With additional correlative analysis techniques (such as EBSD and TEM) we have access to the structure of the grain boundaries and can take its influence on the recombination activity into account. The aim is to give a deeper understanding of the relationship between recombination activity and the GB structure and chemistry. The work is done in collaboration with several scientist involved in SolarWinS project which aim is  to develop new process steps for the production of optimized mc-Si solar cells.

References:

  1. B. J. Stanbery, Crit. Rev. Solid State 27, 73 (2002).
  2. M. Kemell, M. Ritala, M. Leskelä, Crit. Rev. Solid State 30, 1 (2005).
  3. L. L. Kazmerski, J. Electron Spectrosc. 150, 105 (2006).
  4. P. Jackson, M. Powalla, E. Lotter, D. Hariskos, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, Prog. Photovolt.: Res. Appl. 19, 894 (2011).
  5. T. Nakada, and A. Kunioka, Appl. Phys. Lett. 74, 2444 (1999).
  6. D. Abou-Ras, G. Korstorz, A. Romeo, D. Rudmann, and A. N. Tiwari, Thin Solid Films 480-481, 118-123 (2005).
  7. C. Lei, M. Duch, I. M. Robertson, and A. Rockett, J. Appl. Phys. 108, 114908 (2010).
  8. D. Liao, and A. Rockett. 2003, J. Appl. Phys. 93, 9380 (2003).
  9. C. S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, M. M. Al-Jassim, Appl. Phys. Lett. 82, 127 (2003).
  10. O. Cojocaru-Mirédin, P. Choi, R. Wuerz, and D. Raabe, accepted by Appl. Phys. Lett.
  11. B. Gault, F. Vurpillot, A. Vella, M. Gilbert, , A. Menand, D. Blavette, and B. Deconihout, Rev. Sci. Instrum. 77, 2006, pp. 043705.
  12. Janos Kiss, Thomas Gruhn, and Claudia Felser, proceeding of 37th IEEE Photovoltaic Specialist Conference (PVSC), Seattle 2011, page 002736-002739.
  13. Clas Persson, Braz. J. Phys., vol.36 (3b), pg. 948-951.
  14. O. Cojocaru-Mirédin, P. Choi, R. Wuerz, and D. Raabe, Ultram., Vol. 111, 552-556 (2011).
  15. O. Cojocaru-Mirédin, P. Choi, D. Abou-Ras, S. S. Schmidt, R. Caballero, and D. Raabe, IEEE J. of Photovoltaics, vol 1(2) (2011) 207-212.
  16. P. Choi, O. Cojocaru-Mirédin, D. Abou-Ras, R. Caballero, D. Raabe, V. S. Smentkowski, C. G. Park, G. H. Gu, B. Mazumder, M. H. Wong, Y.-L. Hu, T. P. Melo, and J. S. Speck, Microscopy Today 20(3) (2012) 18-24
  17. Naerland, T.U., L. Arnberg, and A. Holt, Origin of the low carrier lifetime edge zone in multicrystalline PV silicon. Progress in Photovoltaics: Research and Applications, 2009. 17(5): p. 289-296.
  18. Sekiguchi, T., et al., Electrical and optical activities of small angle grain boundaries in multicrystalline Si. physica status solidi (c), 2011. 8(4): p. 1347-1350.
  19. Chen, J., et al., Recombination activity of Σ3 boundaries in boron-doped multicrystalline silicon: Influence of iron contamination. Journal of Applied Physics, 2005. 97(3): p. 033701.
Go to Editor View