Understanding the relationship between misorientation and impurity segregation at the CIGS grain boundaries

Polycrystalline thin-film solar cells based on the compound semiconductors CuInSe2 (CIS) and Cu(In,Ga)Se2 (CIGS) as absorber materials are important for photovoltaic applications because of their high energy conversion efficiency, long-term stable performance, and low-cost production.

Polycrystalline thin-film solar cells based on the compound semiconductors CuInSe2 (CIS) and Cu(In,Ga)Se2 (CIGS) as absorber materials are important for photovoltaic applications because of their high energy conversion efficiency, long-term stable performance, and low-cost production. One of the major factors controlling the cell efficiency is the diffusion of impurities from the soda-lime glass substrate into the absorber layer. Previous studies [14-16] had shown that these impurities are mainly redistributed at the grain boundaries.

This project deals with the development of a novel approach of preparing site-specific atom-probe specimens using combined focused-ion beam, electron backscatter diffraction, and transmission electron microscopy. This method allows selected grain boundaries with a known location in CIGS thin-films to be studied by APT. Indeed, the aim of this project is to understand the relationship between the misorientation and impurity segregation at the grain boundaries in the CIGS absorber layer.

References:

  1. B. J. Stanbery, Crit. Rev. Solid State 27, 73 (2002).
  2. M. Kemell, M. Ritala, M. Leskelä, Crit. Rev. Solid State 30, 1 (2005).
  3. L. L. Kazmerski, J. Electron Spectrosc. 150, 105 (2006).
  4. P. Jackson, M. Powalla, E. Lotter, D. Hariskos, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, Prog. Photovolt.: Res. Appl. 19, 894 (2011).
  5. T. Nakada, and A. Kunioka, Appl. Phys. Lett. 74, 2444 (1999).
  6. D. Abou-Ras, G. Korstorz, A. Romeo, D. Rudmann, and A. N. Tiwari, Thin Solid Films 480-481, 118-123 (2005).
  7. C. Lei, M. Duch, I. M. Robertson, and A. Rockett, J. Appl. Phys. 108, 114908 (2010).
  8. D. Liao, and A. Rockett. 2003, J. Appl. Phys. 93, 9380 (2003).
  9. C. S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, M. M. Al-Jassim, Appl. Phys. Lett. 82, 127 (2003).
  10. O. Cojocaru-Mirédin, P. Choi, R. Wuerz, and D. Raabe, accepted by Appl. Phys. Lett.
  11. B. Gault, F. Vurpillot, A. Vella, M. Gilbert, , A. Menand, D. Blavette, and B. Deconihout, Rev. Sci. Instrum. 77, 2006, pp. 043705.
  12. Janos Kiss, Thomas Gruhn, and Claudia Felser, proceeding of 37th IEEE Photovoltaic Specialist Conference (PVSC), Seattle 2011, page 002736-002739.
  13. Clas Persson, Braz. J. Phys., vol.36 (3b), pg. 948-951.
  14. O. Cojocaru-Mirédin, P. Choi, R. Wuerz, and D. Raabe, Ultram., Vol. 111, 552-556 (2011).
  15. O. Cojocaru-Mirédin, P. Choi, D. Abou-Ras, S. S. Schmidt, R. Caballero, and D. Raabe, IEEE J. of Photovoltaics, vol 1(2) (2011) 207-212.
  16. P. Choi, O. Cojocaru-Mirédin, D. Abou-Ras, R. Caballero, D. Raabe, V. S. Smentkowski, C. G. Park, G. H. Gu, B. Mazumder, M. H. Wong, Y.-L. Hu, T. P. Melo, and J. S. Speck, Microscopy Today 20(3) (2012) 18-24
  17. Naerland, T.U., L. Arnberg, and A. Holt, Origin of the low carrier lifetime edge zone in multicrystalline PV silicon. Progress in Photovoltaics: Research and Applications, 2009. 17(5): p. 289-296.
  18. Sekiguchi, T., et al., Electrical and optical activities of small angle grain boundaries in multicrystalline Si. physica status solidi (c), 2011. 8(4): p. 1347-1350.
  19. Chen, J., et al., Recombination activity of Σ3 boundaries in boron-doped multicrystalline silicon: Influence of iron contamination. Journal of Applied Physics, 2005. 97(3): p. 033701.
Go to Editor View