Understanding the element/impurity redistribution and defects formation at the CIGS p-n junctions

The CdS/CIGS interface was investigated in the literature by several techniques such as energy dispersive x-ray spectroscopy (EDX) [5-7], x-ray photoelectron spectroscopy (XPS) [8], Auger electron spectroscopy (AES) [8], secondary ion mass spectrometry (SIMS) [8], and scanning Kelvin probe microscopy (SKPM) [9]. These studies showed that the buffer/absorber layer interface is in general intermixed.

The CdS/CIGS interface was investigated in the literature by several techniques such as energy dispersive x-ray spectroscopy (EDX) [5-7], x-ray photoelectron spectroscopy (XPS) [8], Auger electron spectroscopy (AES) [8], secondary ion mass spectrometry (SIMS) [8], and scanning Kelvin probe microscopy (SKPM) [9]. These studies showed that the buffer/absorber layer interface is in general intermixed. Recently, we could clearly resolve a Cd-enriched/Cu,Ga-depleted zone of ~ 1 nm in thickness at the CIGS surface by using the laser-assisted atom probe tomography (APT) [11]. However, the conclusion of the previous study was that the APT results for this particular CIGS solar cell cannot be generally transferred to other CIGS solar cells, as different heat treatments of the CdS buffer layer might result in different compositional gradients at the CdS/CIGS interface.

Moreover, the recent studies performed by density functional theory (DFT) calculation [12, 13] took into account that the CIGS surface is depleted in Cu (Cu vacancies-VCu), but no study spoke about the Ga and Cu depleted CIGS surface. Therefore, the current project elucidates the element/impurity redistribution at the p-n junction and the interaction between these element/impurity and defects in this region. For a complete understanding of point defects in CIGS, first-principles calculation will be performed in this project.

References:

  1. B. J. Stanbery, Crit. Rev. Solid State 27, 73 (2002).
  2. M. Kemell, M. Ritala, M. Leskelä, Crit. Rev. Solid State 30, 1 (2005).
  3. L. L. Kazmerski, J. Electron Spectrosc. 150, 105 (2006).
  4. P. Jackson, M. Powalla, E. Lotter, D. Hariskos, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, Prog. Photovolt.: Res. Appl. 19, 894 (2011).
  5. T. Nakada, and A. Kunioka, Appl. Phys. Lett. 74, 2444 (1999).
  6. D. Abou-Ras, G. Korstorz, A. Romeo, D. Rudmann, and A. N. Tiwari, Thin Solid Films 480-481, 118-123 (2005).
  7. C. Lei, M. Duch, I. M. Robertson, and A. Rockett, J. Appl. Phys. 108, 114908 (2010).
  8. D. Liao, and A. Rockett. 2003, J. Appl. Phys. 93, 9380 (2003).
  9. C. S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, M. M. Al-Jassim, Appl. Phys. Lett. 82, 127 (2003).
  10. O. Cojocaru-Mirédin, P. Choi, R. Wuerz, and D. Raabe, Appl. Phys. Lett. 101, 181603 (2012).
  11. B. Gault, F. Vurpillot, A. Vella, M. Gilbert, , A. Menand, D. Blavette, and B. Deconihout, Rev. Sci. Instrum. 77, 2006, pp. 043705.
  12. Janos Kiss, Thomas Gruhn, and Claudia Felser, proceeding of 37th IEEE Photovoltaic Specialist Conference (PVSC), Seattle 2011, page 002736-002739.
  13. Clas Persson, Braz. J. Phys., vol.36 (3b), pg. 948-951.
  14. O. Cojocaru-Mirédin, P. Choi, D. Abou-Ras, S. S. Schmidt, R. Caballero, and D. Raabe, IEEE J. of Photovoltaics, vol 1(2) (2011) 207-212.
  15. O. Cojocaru-Mirédin, P. Choi, R. Wuerz, and D. Raabe, Ultram., Vol. 111, 552-556 (2011).
  16. P. Choi, O. Cojocaru-Mirédin, D. Abou-Ras, R. Caballero, D. Raabe, V. S. Smentkowski, C. G. Park, G. H. Gu, B. Mazumder, M. H. Wong, Y.-L. Hu, T. P. Melo, and J. S. Speck, Microscopy Today 20(3) (2012) 18-24
  17. Naerland, T.U., L. Arnberg, and A. Holt, Origin of the low carrier lifetime edge zone in multicrystalline PV silicon. Progress in Photovoltaics: Research and Applications, 2009. 17(5): p. 289-296.
  18. Sekiguchi, T., et al., Electrical and optical activities of small angle grain boundaries in multicrystalline Si. physica status solidi (c), 2011. 8(4): p. 1347-1350.
  19. Chen, J., et al., Recombination activity of Σ3 boundaries in boron-doped multicrystalline silicon: Influence of iron contamination. Journal of Applied Physics, 2005. 97(3): p. 033701.
Go to Editor View