Itani, H.; Santa, M.; Keil, P.; Grundmeier, G.: Backside SERS Studies of Inhibitor Transport Through Polyelectrolyte Films on Ag-substrates. Journal of Colloid and Interface Science 357 (2), pp. 480 - 486 (2011)
Posner, R.; Santa, M.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel I. Interface Potentials and Characteristics of Ion Transport Processes. Journal of the Electrochemical Society 158 (3), pp. C29 - C35 (2011)
Santa, M.; Posner, R.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel II. The Influence of -Glycidoxypropyltrimethoxysilane as an Adhesion Promoting Additive. Journal of the Electrochemical Society 158 (3), pp. C36 - C41 (2011)
Santa, M.; Posner, R.; Grundmeier, G.: In-situ study of the deterioration of thiazole/gold and thiazole/silver interfaces during interfacial ion transport processes. Journal of Electroanalytical Chemistry 643 (1-2), pp. 94 - 101 (2010)
Kundu, S.; Nagaiah, T.C.; Xia, W.; Wang, Y. M.; Van Dommele, S.; Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W.et al.; Muhler, M.: Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen reduction Reaction. J. Phys. Chem. C 113 (32), pp. 14302 - 14310 (2009)
Santa, M.; Posner, R.; Grundmeier, G.: In-situ backside surface enhanced Raman study on the reactive wetting process at noble metal-monolayer interfaces supported by SKP, XPS and ToF-SIMS. Kurt Schwabe Symposium 2009, Erlangen, Germany (2009)
Santa, M.; Posner, R.; Grundmeier, G.: Surface enhanced Raman spectroscopy and Scanning Kelvin Probe studies of corrosive de-adhesion at polymer-metal interfaces. The 59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain (2008)
Santa, M.: Combined in-situ spectroscopic and electrochemical studies of interfacial and interphasial reactions during adsorption and de-adhesion of polymer films on metals. Dissertation, Universität Paderborn, Paderborn, Germany (2010)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…